本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!
除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
8441 | 2025-02-01 |
Prediction of Brain Cancer Occurrence and Risk Assessment of Brain Hemorrhage Using Hybrid Deep Learning Technique
2025-Jan, Cancer investigation
IF:1.8Q3
DOI:10.1080/07357907.2024.2431829
PMID:39629783
|
研究论文 | 本文提出了一种混合深度学习技术,用于预测脑癌发生和评估脑出血风险 | 结合了多头部自注意力扩张卷积神经网络(MH-SA-DCNN)和图基深度神经网络模型(G-DNN),并采用Osprey优化算法(OPA)进行模型优化 | 未提及具体样本量和数据集的具体来源 | 预测脑癌发生和评估脑出血风险 | 脑MRI和CT扫描图像 | 医学影像分析 | 脑癌 | 混合深度学习技术 | MH-SA-DCNN, G-DNN, Cox回归模型 | 图像 | NA |
8442 | 2025-01-18 |
A deep learning-based method for modeling of RNA structures from cryo-EM maps
2025-Jan, Nature biotechnology
IF:33.1Q1
DOI:10.1038/s41587-024-02162-x
PMID:38396076
|
NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
8443 | 2025-02-01 |
Improved Generalizability in Medical Computer Vision: Hyperbolic Deep Learning in Multi-Modality Neuroimaging
2024-Dec-12, Journal of imaging
IF:2.7Q3
DOI:10.3390/jimaging10120319
PMID:39728216
|
研究论文 | 本研究探讨了双曲卷积神经网络(HCNNs)在神经影像任务中相较于传统卷积神经网络(CNNs)的潜在优势,特别是在提高模型泛化能力方面 | 利用非欧几里得空间的几何原理,HCNNs在神经影像数据中展现出增强的鲁棒性和语义组织能力,尤其在零样本评估中表现优于CNNs和放射科医生 | HCNNs在处理更大、更复杂的数据集时面临效率和性能挑战,需要进一步优化架构 | 研究目的是通过比较HCNNs和CNNs在多种医学影像模态和疾病中的表现,评估HCNNs在提高模型泛化能力方面的潜力 | 研究对象包括多模态神经影像数据集和缺血性卒中非对比CT图像 | 计算机视觉 | 阿尔茨海默病 | 深度学习 | HCNNs, CNNs | 图像 | 多模态神经影像数据集和缺血性卒中非对比CT图像 |
8444 | 2025-02-01 |
Automatic Quantitative Analysis of Internal Quantum Efficiency Measurements of GaAs Solar Cells Using Deep Learning
2024-Dec-04, Advanced science (Weinheim, Baden-Wurttemberg, Germany)
DOI:10.1002/advs.202407048
PMID:39630124
|
研究论文 | 本文提出了一种使用深度学习方法自动预测砷化镓太阳能电池内部量子效率(IQE)测量中多个关键参数的方法 | 首次将深度学习方法应用于非硅太阳能电池(如砷化镓电池)的IQE测量定量分析,提高了参数预测的准确性和对噪声测量的鲁棒性 | 目前仅针对砷化镓太阳能电池进行了验证,未涉及其他非硅太阳能电池技术 | 提高砷化镓太阳能电池内部量子效率测量的定量分析效率和准确性 | 砷化镓太阳能电池 | 机器学习 | NA | 深度学习方法 | NA | 量子效率测量数据 | NA |
8445 | 2025-02-01 |
Inferring the genetic relationships between unsupervised deep learning-derived imaging phenotypes and glioblastoma through multi-omics approaches
2024-Nov-22, Briefings in bioinformatics
IF:6.8Q1
DOI:10.1093/bib/bbaf037
PMID:39879386
|
研究论文 | 本研究旨在探讨无监督深度学习衍生的影像表型(UDIPs)与胶质母细胞瘤(GBM)之间的遗传关联 | 结合GWAS数据、单核RNA测序(snRNA-seq)和scPagwas方法,探索UDIPs与GBM的遗传联系,并识别了23个与GBM有显著因果关联的UDIPs | 研究中涉及的UDIPs数量较多(512个),但仅有23个显示出显著关联,可能限制了结果的广泛适用性 | 研究无监督深度学习衍生的影像表型与胶质母细胞瘤之间的遗传关联 | 胶质母细胞瘤(GBM)患者及其影像表型 | 数字病理学 | 胶质母细胞瘤 | GWAS, snRNA-seq, scPagwas | 无监督深度学习 | 影像数据, 基因组数据 | 512个UDIPs |
8446 | 2025-02-01 |
Deep learning-based image quality assessment for optical coherence tomography macular scans: a multicentre study
2024-Oct-22, The British journal of ophthalmology
DOI:10.1136/bjo-2023-323871
PMID:39033014
|
研究论文 | 本文开发并外部测试了用于评估Cirrus和Spectralis光学相干断层扫描设备三维黄斑扫描图像质量的深度学习模型 | 使用深度学习模型评估三维黄斑扫描图像质量,并进行了多中心外部测试 | 研究依赖于特定设备(Cirrus和Spectralis)的数据,可能不适用于其他设备 | 开发用于评估光学相干断层扫描图像质量的深度学习模型 | Cirrus和Spectralis光学相干断层扫描设备的三维黄斑扫描图像 | 计算机视觉 | 黄斑疾病 | 深度学习 | ResNet-18 | 图像 | 2277个Cirrus 3D扫描和1557个Spectralis 3D扫描 |
8447 | 2025-02-01 |
Deep learning analysis of serial digital breast tomosynthesis images in a prospective cohort of breast cancer patients who received neoadjuvant chemotherapy
2024-Sep, European journal of radiology
IF:3.2Q1
DOI:10.1016/j.ejrad.2024.111624
PMID:39029241
|
研究论文 | 本研究探讨了在乳腺癌新辅助化疗(NACT)期间使用人工智能(AI)分析连续数字乳腺断层合成(DBT)图像,以预测NACT完成后的病理完全缓解(pCR) | 首次将深度学习AI系统应用于连续DBT图像分析,以预测乳腺癌患者的pCR | 样本量较小,未来需要更大数据集以进行更全面的模型训练和性能评估 | 探索AI在乳腺癌NACT期间预测pCR的潜力 | 接受NACT的乳腺癌患者 | 计算机视觉 | 乳腺癌 | 数字乳腺断层合成(DBT) | 3D ResNet | 图像 | 149名女性乳腺癌患者 |
8448 | 2025-02-01 |
Multicenter privacy-preserving model training for deep learning brain metastases autosegmentation
2024-09, Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology
IF:4.9Q1
DOI:10.1016/j.radonc.2024.110419
PMID:38969106
|
研究论文 | 本研究探讨了多中心数据异质性对深度学习脑转移自动分割性能的影响,并评估了增量迁移学习技术(LWF)在不共享原始数据的情况下提高模型泛化能力的有效性 | 提出了使用增量迁移学习技术(LWF)进行隐私保护的模型训练,以提高多中心数据下的模型泛化能力 | 数据异质性(如转移密度、空间分布和图像空间分辨率的差异)导致模型性能在不同中心间存在差异,限制了模型的泛化能力 | 研究多中心数据异质性对深度学习脑转移自动分割性能的影响,并评估增量迁移学习技术的有效性 | 脑转移(BM)的自动分割 | 计算机视觉 | 脑转移 | 深度学习 | DeepMedic网络 | 医学影像 | 来自六个中心的脑转移数据集(UKER、USZ、Stanford、UCSF、NYU、BraTS Challenge 2023) |
8449 | 2025-02-01 |
Artificial intelligence for triaging of breast cancer screening mammograms and workload reduction: A meta-analysis of a deep learning software
2024-Sep, Journal of medical screening
IF:2.6Q2
DOI:10.1177/09691413231219952
PMID:38115810
|
meta-analysis | 本文通过meta分析评估了基于AI的乳腺癌筛查乳腺X光片分诊在减少放射科医生工作量方面的效果 | 首次通过meta分析评估了深度学习算法在乳腺癌筛查乳腺X光片分诊中的应用及其对放射科医生工作量的影响 | AI的实施仍然复杂且异质性较大 | 评估基于AI的乳腺癌筛查乳腺X光片分诊是否能在保持高敏感性的同时减少放射科医生的工作量 | 乳腺癌筛查乳腺X光片 | digital pathology | breast cancer | deep learning | DL | image | 156,852次检查 |
8450 | 2025-02-01 |
Neuroimage analysis using artificial intelligence approaches: a systematic review
2024-Sep, Medical & biological engineering & computing
IF:2.6Q3
DOI:10.1007/s11517-024-03097-w
PMID:38664348
|
系统综述 | 本文系统回顾了人工智能在神经影像数据分析中的应用及其对提升诊断能力和推动领域发展的影响 | 通过系统回顾456篇相关文献,揭示了AI技术在神经影像分析中的广泛应用及其在疾病分类和病变分割等临床任务中的优势 | 研究仅限于2013年至2023年间的文献,可能未涵盖最新的技术进展 | 探讨AI技术在神经影像数据分析中的应用,以提升诊断能力和推动领域发展 | 神经影像数据,特别是与精神和神经系统疾病相关的数据 | 神经影像分析 | 精神和神经系统疾病 | 机器学习和深度学习算法 | NA | 神经影像数据 | 456篇相关文献,其中104篇被详细回顾 |
8451 | 2025-02-01 |
Analysis of the integrated role of the Yangtze River Delta based on the industrial economic resilience of cities during COVID-19
2024-07-26, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-024-68357-z
PMID:39060630
|
研究论文 | 本研究探讨了COVID-19期间长江三角洲地区城市产业经济韧性及其对区域一体化战略的影响 | 使用UNet深度学习方法检测土地利用类型,并结合土地转移矩阵和标准差椭圆分析工业用地变化和工业产值空间分布 | 研究区域仅限于安徽省的芜湖、马鞍山和滁州三市,可能无法全面反映整个长江三角洲地区的情况 | 分析COVID-19期间长江三角洲地区城市产业经济韧性及其对区域一体化战略的影响 | 安徽省的芜湖、马鞍山和滁州三市的工业用地和工业产值 | 机器学习 | NA | UNet深度学习方法 | UNet | 土地利用数据 | 安徽省的芜湖、马鞍山和滁州三市 |
8452 | 2025-02-01 |
Deep learning automatically assesses 2-µm laser-induced skin damage OCT images
2024-Apr-18, Lasers in medical science
IF:2.1Q2
DOI:10.1007/s10103-024-04053-8
PMID:38634947
|
研究论文 | 本研究提出了一种基于光学相干断层扫描(OCT)和深度学习技术的非侵入性、自动化体内评估方法,用于定性和定量分析2微米激光诱导皮肤损伤在不同照射剂量下的生物学效应 | 首次将深度学习技术应用于2微米激光诱导皮肤损伤的OCT图像分析,实现了损伤的自动分割和定量评估 | 研究仅限于小鼠模型,尚未在人体上进行验证 | 开发一种非侵入性、自动化的方法,用于评估2微米激光诱导的皮肤损伤 | 小鼠皮肤损伤模型 | 计算机视觉 | 皮肤损伤 | 光学相干断层扫描(OCT) | U-Net, DeepLabV3+, PSP-Net, HR-Net | 图像 | 不同照射剂量下的小鼠皮肤损伤组织 |
8453 | 2025-02-01 |
Application of Deep Learning Algorithms Based on the Multilayer Y0L0v8 Neural Network to Identify Fungal Keratitis
2024, Sovremennye tekhnologii v meditsine
DOI:10.17691/stm2024.16.4.01
PMID:39881837
|
研究论文 | 本文开发了一种基于深度学习算法的真菌性角膜炎诊断方法,通过分析眼前节照片,并在测试数据集上评估该方法的敏感性和特异性,与执业眼科医生的结果进行比较 | 使用多层Y0L0v8神经网络进行真菌性角膜炎的自动诊断,这是首次将此类深度学习算法应用于该疾病的诊断 | 方法的性能仅在测试数据集上进行了评估,未在更大规模或多样化的临床环境中验证 | 开发一种基于深度学习算法的真菌性角膜炎诊断方法 | 真菌性角膜炎 | 计算机视觉 | 角膜炎 | 深度学习 | Y0L0v8神经网络 | 图像 | NA |
8454 | 2025-02-01 |
The global research of magnetic resonance imaging in Alzheimer's disease: a bibliometric analysis from 2004 to 2023
2024, Frontiers in neurology
IF:2.7Q3
DOI:10.3389/fneur.2024.1510522
PMID:39882364
|
研究论文 | 本文通过文献计量分析总结了2004年至2023年间阿尔茨海默病(AD)研究中磁共振成像(MRI)的应用,并预测了未来的研究热点 | 首次通过文献计量学方法系统分析了AD研究中MRI的应用趋势,并识别出当前研究热点为深度学习和tau病理学 | 研究仅基于Web of Science Core Collection数据库,可能未涵盖所有相关文献 | 总结AD研究中MRI的应用趋势并预测未来研究热点 | AD患者 | 数字病理学 | 老年疾病 | MRI | 深度学习 | 文献数据 | 13,659篇文章 |
8455 | 2025-02-01 |
Evolution of artificial intelligence in healthcare: a 30-year bibliometric study
2024, Frontiers in medicine
IF:3.1Q1
DOI:10.3389/fmed.2024.1505692
PMID:39882522
|
研究论文 | 本文对过去30年医疗保健领域人工智能(AI)的文献进行了动态和纵向的文献计量分析,以探讨医学与人工智能融合的现状和趋势 | 首次对医疗保健领域AI文献进行30年的纵向文献计量分析,揭示了AI技术在医疗领域的持续爆发性增长趋势 | 研究主要基于Web of Science数据库,可能未涵盖所有相关文献 | 探讨医学与人工智能融合的现状和趋势 | 1993年至2023年间发表的医疗保健领域AI相关文献 | 机器学习 | NA | 文献计量分析 | NA | 文献数据 | 22,950篇文献 |
8456 | 2025-02-01 |
Alzheimer's Disease Classification Using 2D Convolutional Neural Networks
2021-11, Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference
DOI:10.1109/EMBC46164.2021.9629587
PMID:34891877
|
研究论文 | 本文提出了一种使用2D卷积神经网络(CNN)对阿尔茨海默病(AD)进行分类的方法,并在3D MRI数据上进行了测试 | 提出了三种利用2D CNN处理3D MRI数据的方法,相较于基于ResNet的3D CNN模型,在AD诊断上提高了8.33%的准确率和10.11%的auROC,同时显著减少了超过89%的训练时间 | 讨论了性能提升的潜在原因和局限性 | 提高阿尔茨海默病的诊断准确性和效率 | 阿尔茨海默病患者 | 计算机视觉 | 阿尔茨海默病 | 脑磁共振成像(MRI) | 2D CNN | 3D MRI数据 | 阿尔茨海默病神经影像倡议(ADNI)数据集 |
8457 | 2025-02-01 |
Deep learning based Nucleus Classification in pancreas histological images
2017-Jul, Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference
DOI:10.1109/EMBC.2017.8036914
PMID:29059962
|
研究论文 | 本文提出了一种基于深度学习的细胞核分类方法(DeepNC),用于胰腺组织学图像中的细胞核分类 | 提出了一种结合组织病理学和免疫荧光图像的深度学习细胞核分类方法,解决了基因组或转录组与病理学评估之间肿瘤纯度估计的差异问题 | 训练深度学习模型在大数据集上存在挑战 | 提高组织学评估的准确性,解决肿瘤纯度估计的差异问题 | 胰腺组织学图像中的细胞核 | 数字病理学 | 胰腺癌 | 深度学习 | 深度学习模型 | 图像 | 大量样本 |
8458 | 2025-01-31 |
Monitoring nap deprivation-induced fatigue using fNIRS and deep learning
2025-Dec, Cognitive neurodynamics
IF:3.1Q2
DOI:10.1007/s11571-025-10219-z
PMID:39866657
|
研究论文 | 本文利用便携式fNIRS系统和深度学习模型监测由午睡剥夺引起的疲劳状态,并提出了一种新的1D修订CNN-ResNet网络用于疲劳状态分类 | 提出了一种基于双层通道衰减残差块的新型1D修订CNN-ResNet网络,用于处理fNIRS信号数据的高维度和多通道特性 | NA | 监测和分类由午睡剥夺引起的疲劳状态,探索通过运动刺激强制唤醒疲劳受试者的可行性 | 由午睡剥夺引起的疲劳状态 | 机器学习 | NA | fNIRS | 1D revised CNN-ResNet | fNIRS信号数据 | NA |
8459 | 2025-01-31 |
Detecting autism in children through drawing characteristics using the visual-motor integration test
2025-Dec, Health information science and systems
IF:4.7Q1
DOI:10.1007/s13755-025-00338-6
PMID:39877430
|
研究论文 | 本研究介绍了一种新颖的分类方法,通过视觉-运动整合测试中的绘图特征来区分自闭症儿童与正常发育儿童 | 采用深度学习分类模型和集成学习,显著提高了分类准确率至0.934,并识别出五个最能区分自闭症儿童与正常儿童绘图表现的模式 | 样本量较小,仅包括50名儿童,且性别比例不均(44名男孩和6名女孩) | 开发一种跨文化工具,用于自闭症的早期检测和干预 | 台湾50名6至12岁的学龄儿童,包括44名男孩和6名女孩 | 计算机视觉 | 自闭症 | 深度学习 | 集成学习 | 图像 | 50名儿童(44名男孩和6名女孩) |
8460 | 2025-01-31 |
A multi-dimensional student performance prediction model (MSPP): An advanced framework for accurate academic classification and analysis
2025-Jun, MethodsX
IF:1.6Q2
DOI:10.1016/j.mex.2024.103148
PMID:39866196
|
研究论文 | 本文提出了一种多维学生表现预测模型(MSPP),旨在通过深度学习和先进的数据预处理技术提高学生学术分类的准确性 | MSPP模型结合了自适应超参数调整和先进的图神经网络层,能够处理不平衡和时间序列的教育数据集,并通过AI特征提供可解释性 | NA | 提高学生表现预测的准确性,以支持定制化干预措施,提升学习效果 | 学生学术数据 | 机器学习 | NA | 深度学习 | 图神经网络(GNN) | 结构化训练记录 | NA |