本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!
除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
8601 | 2024-11-23 |
Corrigendum to: Deep learning(s) in gaming disorder through the user-avatar bond: A longitudinal study using machine learning
2024-Nov-22, Journal of behavioral addictions
IF:6.6Q1
DOI:10.1556/2006.2024.30000
PMID:39576296
|
NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
8602 | 2025-01-19 |
Association of quantitative histopathology measurements with antemortem medial temporal lobe cortical thickness in the Alzheimer's disease continuum
2024-Sep-03, Acta neuropathologica
IF:9.3Q1
DOI:10.1007/s00401-024-02789-9
PMID:39227502
|
研究论文 | 本文开发了两种深度学习算法,用于测量与阿尔茨海默病和LATE相关的磷酸化tau和TDP-43病理,并探讨了这些病理与内侧颞叶结构测量之间的关系 | 使用深度学习算法定量测量磷酸化tau和TDP-43病理,提供了比半定量评分更精细的病理测量方法,并展示了其在理解病理与结构关系中的优势 | 研究样本量相对较小(140例),且仅关注了内侧颞叶区域,未涉及其他脑区 | 探讨内侧颞叶萎缩与特定神经病理之间的关系,特别是磷酸化tau和TDP-43病理 | 阿尔茨海默病和LATE患者的脑组织样本 | 数字病理学 | 阿尔茨海默病 | 深度学习 | 深度学习算法 | 图像 | 140例生前MRI成像的病例 |
8603 | 2025-01-19 |
ARID3C Acts as a Regulator of Monocyte-to-Macrophage Differentiation Interacting with NPM1
2024-Aug-02, Journal of proteome research
IF:3.8Q1
DOI:10.1021/acs.jproteome.3c00509
PMID:38231884
|
研究论文 | 本研究探讨了ARID3C的细胞定位和功能,发现其与NPM1相互作用,促进单核细胞向巨噬细胞分化 | 首次揭示了ARID3C通过与NPM1结合并转运至细胞核,作为转录因子调控单核细胞向巨噬细胞分化的机制 | 未明确ARID3C在其他细胞类型或生物过程中的功能 | 阐明ARID3C的生物学功能及其在单核细胞向巨噬细胞分化中的作用 | ARID3C蛋白及其与NPM1的相互作用 | 分子生物学 | NA | LC-MS/MS, 深度学习, AlphaFold2 | 深度学习 | 蛋白质相互作用数据 | NA |
8604 | 2025-01-19 |
Chest CT-based automated vertebral fracture assessment using artificial intelligence and morphologic features
2024-Jun, Medical physics
IF:3.2Q1
DOI:10.1002/mp.17072
PMID:38721977
|
研究论文 | 本文提出了一种基于胸部CT的自动化椎体骨折评估方法,利用深度学习和形态学特征进行椎体分割、标记和骨折检测 | 结合深度学习、多参数冻结增长算法和强度自相关技术,实现了椎体的自动化分割、标记及骨折检测,并验证了该方法在低剂量CT上的通用性 | 方法在低剂量CT上的通用性验证样本量较小(n=236),可能需要进一步扩大样本量以验证其稳定性 | 开发一种自动化方法,用于胸部CT图像中的椎体骨折评估,以替代人工专家阅读 | 慢性阻塞性肺疾病(COPD)患者的胸部CT图像 | 数字病理学 | 慢性阻塞性肺疾病 | 深度学习、多参数冻结增长算法、强度自相关 | 深度学习网络 | 胸部CT图像 | 3231名COPDGene研究参与者的40,050个椎体,其中120个扫描用于训练和验证深度学习模型,236个低剂量CT扫描用于通用性验证 |
8605 | 2025-01-19 |
Automated deep learning segmentation of high-resolution 7 Tesla postmortem MRI for quantitative analysis of structure-pathology correlations in neurodegenerative diseases
2024-May-01, Imaging neuroscience (Cambridge, Mass.)
DOI:10.1162/imag_a_00171
PMID:39301426
|
研究论文 | 本文介绍了一种用于高分辨率7特斯拉死后MRI的自动深度学习分割方法,用于神经退行性疾病的结构-病理相关性定量分析 | 开发了一个深度学习管道,通过基准测试九种深度神经架构的性能来分割皮质层,并进行后处理拓扑校正 | 由于标记数据集的有限可用性以及扫描仪硬件和采集协议的异质性,自动分割方法在死后MRI中的应用尚未充分发展 | 开发自动分割方法以链接病理学测量与形态测量学测量 | 死后人类脑组织样本 | 数字病理学 | 阿尔茨海默病 | 7T MRI, T2w序列, T2*w FLASH序列 | 深度神经网络 | MRI图像 | 135个死后人类脑组织样本,其中82个样本有阿尔茨海默病连续诊断 |
8606 | 2025-01-19 |
NON-CARTESIAN SELF-SUPERVISED PHYSICS-DRIVEN DEEP LEARNING RECONSTRUCTION FOR HIGHLY-ACCELERATED MULTI-ECHO SPIRAL FMRI
2024-May, Proceedings. IEEE International Symposium on Biomedical Imaging
DOI:10.1109/isbi56570.2024.10635551
PMID:39669313
|
研究论文 | 本文提出了一种基于物理驱动的深度学习(PD-DL)重建方法,用于加速多回波螺旋fMRI的10倍重建 | 本文的创新点在于将自监督学习算法修改并应用于非笛卡尔轨迹的优化训练,以实现高时空分辨率的多回波螺旋fMRI重建 | NA | 研究目的是通过深度学习技术加速多回波螺旋fMRI的重建,以提高时空分辨率 | 多回波螺旋fMRI数据 | 医学影像处理 | NA | 深度学习 | PD-DL网络 | fMRI图像数据 | NA |
8607 | 2025-01-19 |
Human-airway surface mesh smoothing based on graph convolutional neural networks
2024-Apr, Computer methods and programs in biomedicine
IF:4.9Q1
DOI:10.1016/j.cmpb.2024.108061
PMID:38341897
|
研究论文 | 本文提出了一种基于图卷积神经网络(GCNNs)的无监督气道网格平滑学习方法(AMSL),用于保留三维气道几何形状,以进行精确的CT图像计算流体动力学(CFD)模拟 | 引入了一种新的无监督气道网格平滑学习方法(AMSL),该方法通过联合训练两个图卷积神经网络来过滤顶点位置和面法向量,并采用深度网格先验模型的概念,无需大量数据集进行训练 | 研究仅使用了20名受试者的气道图像进行平滑处理,其中仅两名受试者的数据用于CFD模拟,样本量较小 | 开发一种能够保留三维气道几何形状的平滑方法,以进行精确的CT图像计算流体动力学(CFD)模拟 | 气道几何形状 | 计算机视觉 | NA | CT图像计算流体动力学(CFD)模拟 | 图卷积神经网络(GCNNs) | 图像 | 20名受试者的气道图像 |
8608 | 2025-01-19 |
Investigating distributions of inhaled aerosols in the lungs of post-COVID-19 clusters through a unified imaging and modeling approach
2024-Apr-01, European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences
IF:4.3Q1
DOI:10.1016/j.ejps.2024.106724
PMID:38340875
|
研究论文 | 本研究通过结合成像和建模方法,调查了COVID-19后遗症患者肺部吸入气溶胶的分布情况 | 利用深度学习算法识别出COVID-19后遗症患者的两个集群,并通过计算模型分析预测了这两个集群的气道阻力和颗粒沉积情况 | 样本量相对较小,且仅包括COVID-19幸存者和健康对照组 | 评估COVID-19后遗症患者集群中吸入气溶胶的分布情况 | COVID-19幸存者和健康对照组 | 数字病理学 | COVID-19 | CT扫描和计算模型分析 | 深度学习算法 | CT图像 | 140名COVID-19幸存者和105名健康对照组 |
8609 | 2025-01-19 |
Mapping cell-to-tissue graphs across human placenta histology whole slide images using deep learning with HAPPY
2024-Mar-28, Nature communications
IF:14.7Q1
DOI:10.1038/s41467-024-46986-2
PMID:38548713
|
研究论文 | 本文介绍了一种名为HAPPY的深度学习分层方法,用于量化胎盘组织学全切片图像中细胞和微解剖组织结构的变异性 | HAPPY方法不同于基于补丁的特征或分割方法,它遵循可解释的生物层次结构,在全切片图像中以单细胞分辨率表示细胞和组织中的细胞群落 | NA | 开发一种深度学习方法来准确评估胎盘病理学,以管理母婴健康 | 胎盘组织学全切片图像 | 数字病理学 | NA | 深度学习 | NA | 图像 | 健康足月胎盘和具有临床显著胎盘梗死的胎盘 |
8610 | 2025-01-19 |
Using deep learning to quantify neuronal activation from single-cell and spatial transcriptomic data
2024-Jan-26, Nature communications
IF:14.7Q1
DOI:10.1038/s41467-023-44503-5
PMID:38278804
|
研究论文 | 本文介绍了一种名为NEUROeSTIMator的深度学习模型,用于从单细胞和空间转录组数据中量化神经元激活 | NEUROeSTIMator模型能够整合转录组信号来估计神经元激活,且与Patch-seq电生理特征相关联,对物种、细胞类型和脑区差异具有鲁棒性 | NA | 开发一种能够准确检测神经元激活的工具,以研究神经元活动依赖性转录 | 神经元激活 | 机器学习 | NA | 单细胞RNA测序(scRNAseq) | 深度学习模型 | 转录组数据 | 已发表研究中的单细胞活动诱导基因表达数据,以及雄性小鼠不同脑区的空间转录组数据 |
8611 | 2025-01-19 |
Regional Deep Atrophy: a Self-Supervised Learning Method to Automatically Identify Regions Associated With Alzheimer's Disease Progression From Longitudinal MRI
2023-Apr-10, ArXiv
PMID:37090239
|
研究论文 | 本文提出了一种名为区域深度萎缩(RDA)的自监督学习方法,用于从纵向MRI中自动识别与阿尔茨海默病进展相关的区域 | RDA结合了DeepAtrophy的时间推断方法、可变形配准神经网络和注意力机制,能够突出显示MRI图像中与时间推断相关的纵向变化区域,提高了模型的可解释性 | 尽管RDA在预测准确性上与DeepAtrophy相似,但其在临床环境中的应用仍需进一步验证 | 开发一种能够自动识别与阿尔茨海默病进展相关的MRI区域的方法,以提高疾病监测的敏感性和临床应用的接受度 | 阿尔茨海默病患者的纵向MRI扫描数据 | 计算机视觉 | 阿尔茨海默病 | 深度学习 | 卷积神经网络(CNN) | MRI图像 | NA |
8612 | 2025-01-18 |
Brief Review and Primer of Key Terminology for Artificial Intelligence and Machine Learning in Hypertension
2025-Jan, Hypertension (Dallas, Tex. : 1979)
|
review | 本文简要回顾并介绍了人工智能和机器学习在高血压领域的关键术语 | 本文提供了人工智能和机器学习在高血压管理中的应用概述,特别是通过远程患者监测和数字疗法来改善诊断和治疗 | 本文主要是一个术语介绍和综述,未涉及具体的研究数据或实验结果 | 介绍人工智能和机器学习在高血压管理中的应用及其潜力 | 高血压患者及其相关数据 | machine learning | cardiovascular disease | NA | NA | structured or unstructured data sets | NA |
8613 | 2025-01-18 |
Predicting therapeutic response to neoadjuvant immunotherapy based on an integration model in resectable stage IIIA (N2) non-small cell lung cancer
2025-Jan, The Journal of thoracic and cardiovascular surgery
IF:4.9Q1
DOI:10.1016/j.jtcvs.2024.05.006
PMID:38763304
|
研究论文 | 本研究探讨了基于血液的肿瘤突变负荷(bTMB)和深度学习模型在预测可切除IIIA期(N2)非小细胞肺癌新辅助化疗免疫治疗中的主要病理反应(MPR)和生存率的有效性 | 开发了一个结合计算机断层扫描(CT)的深度学习评分、bTMB和临床因素的综合模型,用于预测新辅助化疗免疫治疗的肿瘤反应 | 样本量较小(45名患者),且基线循环肿瘤DNA(ctDNA)状态与病理反应和生存率无显著关联 | 预测可切除IIIA期(N2)非小细胞肺癌患者对新辅助化疗免疫治疗的反应 | 45名接受新辅助化疗免疫治疗的IIIA期(N2)非小细胞肺癌患者 | 数字病理学 | 肺癌 | 深度学习模型,血液肿瘤突变负荷(bTMB)检测 | 深度学习模型 | 血液样本,CT图像 | 45名IIIA期(N2)非小细胞肺癌患者 |
8614 | 2025-01-18 |
TransEBUS: The interpretation of endobronchial ultrasound image using hybrid transformer for differentiating malignant and benign mediastinal lesions
2025-Jan, Journal of the Formosan Medical Association = Taiwan yi zhi
DOI:10.1016/j.jfma.2024.04.016
PMID:38702216
|
研究论文 | 本研究旨在建立一个深度学习自动辅助诊断系统,用于区分内镜超声(EBUS)图像中纵隔病变的良恶性 | 提出了基于混合Transformer的深度学习架构TransEBUS,能够从未充分数据中提取时空特征,并设计了一个双流模块来整合EBUS的三种不同成像模式信息 | 数据集规模可能较小,模型在更大数据集上的表现尚需验证 | 建立自动辅助诊断系统以区分EBUS图像中纵隔病变的良恶性 | 内镜超声(EBUS)图像中的纵隔病变 | 计算机视觉 | 纵隔病变 | 深度学习 | 混合Transformer(TransEBUS) | 视频(EBUS图像) | 未明确说明样本数量 |
8615 | 2025-01-16 |
Deep learning radiomics analysis for prediction of survival in patients with unresectable gastric cancer receiving immunotherapy
2025-Jun, European journal of radiology open
IF:1.8Q3
DOI:10.1016/j.ejro.2024.100626
PMID:39807092
|
研究论文 | 本研究旨在通过结合影像学和临床病理变量,利用深度学习放射组学分析预测接受免疫治疗的不可切除胃癌患者的生存期 | 采用多模态集成方法,结合CT影像数据和临床病理变量,构建深度学习模型预测患者生存期,并构建了列线图进行验证 | 样本量相对较小,且仅在中国人民解放军总医院的两个医疗中心进行,可能限制了结果的普适性 | 预测接受免疫治疗的不可切除胃癌患者的生存期 | 不可切除胃癌患者 | 数字病理 | 胃癌 | 深度学习 | 多模态集成模型 | CT影像数据和临床病理数据 | 训练队列79名患者,外部验证队列97名患者 |
8616 | 2025-01-16 |
Automated Detection of Filamentous Fungal Keratitis on Whole Slide Images of Potassium Hydroxide Smears with Multiple Instance Learning
2025 Mar-Apr, Ophthalmology science
IF:3.2Q1
DOI:10.1016/j.xops.2024.100653
PMID:39811263
|
研究论文 | 本研究评估了深度学习框架双流多实例学习(DSMIL)在自动化分析氢氧化钾(KOH)涂片全片成像(WSI)中的有效性,以快速准确检测真菌感染 | 使用双流多实例学习(DSMIL)处理高分辨率WSI数据,自动检测真菌感染,并通过热图提供视觉解释 | 研究为回顾性观察研究,可能受限于样本选择和人类专家解释的一致性 | 自动化分析KOH涂片WSI,以快速准确检测真菌感染 | 568名疑似真菌性角膜炎患者的角膜刮片 | 数字病理学 | 真菌性角膜炎 | 双流多实例学习(DSMIL) | DSMIL | 图像 | 568名患者的角膜刮片 |
8617 | 2025-01-16 |
Frontal plane mechanical leg alignment estimation from knee x-rays using deep learning
2025-Mar, Osteoarthritis and cartilage open
DOI:10.1016/j.ocarto.2024.100551
PMID:39811691
|
研究论文 | 本研究开发并验证了一种深度学习模型,用于从膝关节前后位(AP)/后前位(PA)X光片中分类腿部对齐为“正常”或“错位”,使用可调的髋-膝-踝(HKA)角度阈值 | 该模型首次从膝关节X光片中分类腿部对齐,提供了一种实用的替代全腿X光片的方法 | 模型的性能依赖于X光片的质量和定位框架的使用 | 提高研究人群选择和患者管理的精确性 | 膝关节前后位(AP)/后前位(PA)X光片 | 计算机视觉 | 膝骨关节炎 | 深度学习 | 深度学习模型 | 图像 | 8878张数字X光片,包括6181张全腿X光片和2697张膝关节X光片 |
8618 | 2025-01-16 |
A survey on deep learning in medical image registration: New technologies, uncertainty, evaluation metrics, and beyond
2025-Feb, Medical image analysis
IF:10.7Q1
DOI:10.1016/j.media.2024.103385
PMID:39612808
|
综述 | 本文全面回顾了深度学习在医学图像配准领域的最新进展,包括网络架构、损失函数、不确定性估计方法及评估指标 | 深入探讨了深度学习在图像配准中的创新网络架构、特定于配准的损失函数以及配准不确定性估计方法 | 未提及具体的技术局限性 | 总结深度学习在医学图像配准领域的最新进展,并探讨其未来发展方向 | 医学图像配准技术 | 计算机视觉 | NA | 深度学习 | U-Net | 医学图像 | NA |
8619 | 2025-01-16 |
Money plant disease atlas: A comprehensive dataset for disease classification in ornamental horticulture
2025-Feb, Data in brief
IF:1.0Q3
DOI:10.1016/j.dib.2024.111216
PMID:39811518
|
研究论文 | 本文介绍了一个用于观赏园艺中疾病分类的综合数据集,重点关注金钱植物的疾病 | 提供了一个全面的金钱植物疾病图像数据集,支持深度学习在观赏园艺中的应用 | 数据集仅限于金钱植物的疾病,未涵盖其他植物种类 | 提高观赏园艺中植物疾病的诊断准确性 | 金钱植物(Epipremnum aureum) | 计算机视觉 | 植物疾病 | 图像处理 | 深度学习 | 图像 | 224 × 224像素的图像数据集 |
8620 | 2025-01-16 |
An efficient deep unrolling network for sparse-view CT reconstruction via alternating optimization of dense-view sinograms and images
2025-Jan-15, Physics in medicine and biology
IF:3.3Q1
DOI:10.1088/1361-6560/ad9dac
PMID:39662047
|
研究论文 | 本文提出了一种高效的深度展开网络,通过交替优化密集视图正弦图和图像来实现稀疏视图CT重建 | 与之前的展开方法不同,该方法专注于优化密集视图正弦图而非全视图正弦图,从而减少计算资源和运行时间,并最小化网络在稀疏比例极小时执行正弦图修复的挑战 | NA | 解决稀疏视图CT重建中的计算资源消耗问题,同时保持重建图像的质量 | 稀疏视图CT重建 | 计算机视觉 | NA | 深度展开方法 | 深度神经网络 | 图像 | 512 × 512像素的图像,2304 × 736的投影数据 |