本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新(使用关键词“['deep learning']
”过滤),已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!
除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价19.9元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 | 算法框架 | 模型架构 | 性能指标 | 计算资源 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
8681 | 2025-10-06 |
Combining Artificial Intelligence and Simplified Image Processing for the Automatic Detection of Mycobacterium tuberculosis in Acid-fast Stain : A Cross-institute Training and Validation Study
2024-Jul-01, The American journal of surgical pathology
DOI:10.1097/PAS.0000000000002223
PMID:38595262
|
研究论文 | 开发结合人工智能和简化图像处理的自动化结核分枝杆菌检测平台 | 结合图像处理技术与改进的EfficientNet模型,能有效识别染色伪影和污染物,实现跨机构验证 | 仅在两所医院进行训练和验证,样本来源有限 | 提高结核病检测的准确性和效率 | 抗酸染色中的结核分枝杆菌 | 数字病理学 | 结核病 | 抗酸染色 | CNN | 图像 | 来自2家医院的全切片图像 | NA | EfficientNet | 准确率, 检测率 | 高性能计算系统 |
8682 | 2025-10-06 |
Protocol to perform integrative analysis of high-dimensional single-cell multimodal data using an interpretable deep learning technique
2024-06-21, STAR protocols
IF:1.3Q4
DOI:10.1016/j.xpro.2024.103066
PMID:38748882
|
研究论文 | 提出使用可解释深度学习技术moETM进行高维单细胞多模态数据整合分析的协议 | 开发了可解释的深度学习技术moETM,能够整合单细胞多组学数据并包含先验通路知识 | NA | 建立单细胞多模态数据整合分析的标准流程 | 骨髓单核细胞的多组学数据 | 机器学习 | NA | 单细胞多组学测序 | 深度学习 | 单细胞多模态数据 | GSE194122数据集中的骨髓单核细胞 | NA | moETM | NA | NA |
8683 | 2025-10-06 |
A deep learning framework for denoising and ordering scRNA-seq data using adversarial autoencoder with dynamic batching
2024-06-21, STAR protocols
IF:1.3Q4
DOI:10.1016/j.xpro.2024.103067
PMID:38748883
|
研究论文 | 提出一种基于动态批处理对抗自编码器的深度学习框架,用于单细胞RNA测序数据的去噪和排序 | 首次将动态批处理技术与对抗自编码器结合应用于scRNA-seq数据去噪 | NA | 开发单细胞RNA测序数据的去噪和排序方法 | 单细胞RNA测序数据 | 机器学习 | NA | 单细胞RNA测序(scRNA-seq) | 对抗自编码器(AAE) | 基因表达数据 | NA | NA | 对抗自编码器 | NA | NA |
8684 | 2025-10-06 |
Machine and deep learning models for accurate detection of ischemia and scar with myocardial blood flow positron emission tomography imaging
2024-02, Journal of nuclear cardiology : official publication of the American Society of Nuclear Cardiology
IF:3.0Q2
DOI:10.1016/j.nuclcard.2024.101797
PMID:38185409
|
研究论文 | 比较传统统计、机器学习和深度学习模型在仅使用静息和负荷心肌血流值诊断冠状动脉疾病的能力 | 首次系统比较传统统计、机器学习和深度学习在心肌血流PET成像中对缺血和瘢痕的检测性能 | 仅基于静息和负荷MBF值进行分析,未整合其他临床特征 | 开发准确检测心肌缺血和瘢痕的机器学习模型 | 冠状动脉疾病患者 | 机器学习 | 心血管疾病 | 铷-82正电子发射断层扫描 | 逻辑回归, LASSO逻辑回归, 支持向量机, 随机森林, 多层感知机, CNN | 医学影像数据 | 3245个静息和负荷PET研究 | NA | U-Net | AUC | NA |
8685 | 2025-10-06 |
Deep learning-based weld defect classification using VGG16 transfer learning adaptive fine-tuning
2023-May-08, International journal on interactive design and manufacturing
DOI:10.1007/s12008-023-01327-3
PMID:40478981
|
研究论文 | 本研究提出了一种基于深度学习的焊接缺陷分类方法,使用VGG16迁移学习和自适应微调技术 | 提出了一种独特的基于图像的方法,使用小规模X射线图像数据集训练深度学习模型,并采用数据增强和迁移学习技术 | 使用的小型数据集在15个不同类别中分布不平衡 | 开发自动焊接缺陷检测和分类系统 | 焊接缺陷 | 计算机视觉 | NA | X射线成像 | CNN | 图像 | 小型X射线图像数据集(具体数量未提及) | NA | VGG16, ResNet50 | 准确率 | NA |
8686 | 2025-10-06 |
Artificial Intelligence and Economic Development: An Evolutionary Investigation and Systematic Review
2023-Mar-11, Journal of the knowledge economy
IF:4.0Q1
DOI:10.1007/s13132-023-01183-2
PMID:40478928
|
系统综述 | 通过文献计量和内容分析方法研究人工智能与经济发展交叉领域的研究现状和发展趋势 | 首次系统性地研究人工智能与经济发展交叉领域,结合定量文献计量和定性内容分析的双重方法 | 基于文献分析,缺乏实证研究验证具体AI技术对经济发展的实际影响 | 探索人工智能技术在经济发展中的角色和地位,识别研究现状和知识缺口 | 人工智能与经济发展交叉领域的学术文献 | 机器学习 | NA | 文献计量分析,内容分析 | NA | 文本数据 | 2211篇文献 | Bibliometrix | NA | NA | NA |
8687 | 2025-06-10 |
A Large-Scale IoT-Based Scheme for Real-Time Prediction of Infectious Disease Symptoms
2023-Feb-02, Mobile networks and applications : MONET
DOI:10.1007/s11036-023-02111-z
PMID:40479340
|
研究论文 | 提出了一种基于物联网(IoT)的大规模实时监测方案,用于通过人们的行为和无线体域网(WBAN)预测传染病症状 | 利用IoT和WBAN技术实时监测人群行为,预测传染病症状及传播,弥补了以往研究依赖医疗设施内拍摄图像的局限性 | 需要构建强大的覆盖模型以确保实时监测,且性能评估依赖于模拟环境 | 开发实时预测传染病症状及传播的监测方案 | 人群行为及传染病症状 | 物联网与健康监测 | 传染病 | IoT, WBAN, 深度学习 | 深度学习模型 | 图像、声音、视频 | NA | NA | NA | NA | NA |
8688 | 2025-06-10 |
Generic image application using GANs (Generative Adversarial Networks): A Review
2022-Sep-30, Evolving systems
IF:2.7Q3
DOI:10.1007/s12530-022-09464-y
PMID:40479410
|
review | 本文对生成对抗网络(GAN)进行了全面回顾,总结了GAN的理论基础、应用目的、模型变体及最新进展 | 提供了GAN在图像处理中的多种应用及其优缺点的详细概述 | GAN的稳定训练仍是一个挑战 | 对GAN相关文献进行全面评估,总结现有知识 | 生成对抗网络(GAN)及其在图像处理中的应用 | machine learning | NA | NA | GAN | image | NA | NA | NA | NA | NA |
8689 | 2025-06-10 |
Forecasting Directional Movement of Stock Prices using Deep Learning
2022-Aug-01, Annals of data science
DOI:10.1007/s40745-022-00432-6
PMID:40479251
|
研究论文 | 本文提出了一种结合Word2Vec和LSTM的混合深度学习模型,用于预测股票价格的定向变动 | 结合了金融时间序列和新闻标题作为输入,考虑了大众媒体对公司股票和投资者行为的影响 | 仅评估了五个不同行业公司的股票价格预测准确性,样本范围有限 | 设计一个智能工具来预测股票市场价格的定向变动 | 股票市场价格 | 机器学习 | NA | Word2Vec, LSTM | 混合深度学习模型 | 金融时间序列, 新闻标题 | 五个不同行业的公司 | NA | NA | NA | NA |
8690 | 2025-10-06 |
QSM reconstruction challenge 2.0: Design and report of results
2021-09, Magnetic resonance in medicine
IF:3.0Q2
DOI:10.1002/mrm.28754
PMID:33783037
|
研究论文 | 报告第二届定量磁化率成像重建挑战赛的设计方案与结果分析 | 采用两阶段挑战赛设计,首次在合成脑数据中系统评估不同QSM偶极反演算法的准确性 | 基于合成数据评估,未来需在包含背景场和偶极不相容相位贡献的更真实场景中验证 | 测试定量磁化率成像重建算法在模拟脑数据中的准确性 | 合成多回波梯度回波图像数据 | 医学影像分析 | 脑部疾病 | 定量磁化率成像,多回波梯度回波成像 | 迭代方法,深度学习,直接反演方法 | 磁共振图像 | 两个真实头模生成的合成数据集 | NA | 基于总变分的算法 | 八个数值指标,视觉评分 | NA |
8691 | 2025-06-09 |
HBUED: An EEG dataset for emotion recognition
2025-Sep-15, Journal of affective disorders
IF:4.9Q1
DOI:10.1016/j.jad.2025.119397
PMID:40368143
|
research paper | 该研究提出了一个大规模EEG数据集HBUED,并开发了一种深度学习方法来提高基于EEG的情绪识别性能 | 提出了一个大规模EEG数据集HBUED,并设计了一种双输入网络架构和平行特征提取模块来提升情绪识别性能 | 未提及具体的数据集样本多样性或模型在其他数据集上的泛化能力 | 提高基于EEG的情绪识别性能 | EEG信号和人类情绪识别 | machine learning | NA | 深度学习 | 双输入网络架构 | EEG信号 | 大规模EEG数据集HBUED和公开DEAP数据集 | NA | NA | NA | NA |
8692 | 2025-06-09 |
Deep learning-driven hyperspectral imaging for real-time monitoring and growth modeling of psychrophilic spoilage bacteria in chilled beef
2025-Aug-02, International journal of food microbiology
IF:5.0Q1
|
研究论文 | 本研究利用深度学习驱动的高光谱成像技术,实时监测和建模冷藏牛肉中嗜冷腐败细菌的生长 | 结合高光谱成像和多种算法(如CARS、PLSR、SCN等)进行细菌含量预测,并应用Baranyi、Huang和Gompertz模型拟合细菌生长曲线 | 模型预测精度仍有提升空间,特别是对乳酸杆菌的预测效果相对较差 | 开发一种快速无损检测冷藏牛肉中细菌含量的方法,以解决食品安全问题 | 冷藏牛肉中的假单胞菌和乳酸杆菌 | 数字病理 | NA | 高光谱成像、平板计数法 | PLSR、SCN、Time Convolution Network with Multihead Attention Mechanism | 光谱数据 | 未明确说明样本数量 | NA | NA | NA | NA |
8693 | 2025-10-06 |
Quantitative multislice and jointly optimized rapid CEST for in vivo whole-brain imaging
2025-Aug, Magnetic resonance in medicine
IF:3.0Q2
DOI:10.1002/mrm.30488
PMID:40087839
|
研究论文 | 开发了一种用于定量多切片化学交换饱和转移成像的深度学习优化框架和脉冲序列 | 首次提出同时优化扫描参数和切片顺序的深度学习框架,解决了多切片序列灵敏度损失的问题 | 仅在三名健康受试者中进行了测试,样本量较小;临床可行性仅在单一受试者中验证 | 开发定量多切片CEST成像方法,提高全脑成像的扫描效率和准确性 | 健康人类受试者的大脑白质和灰质区域 | 医学影像分析 | NA | 化学交换饱和转移成像,多切片成像 | 深度学习 | 医学影像数据 | 3名健康受试者 | NA | NA | 平均误差,扫描效率,Bland-Altman图,Lin一致性相关系数 | NA |
8694 | 2025-06-09 |
Investigating the interpretability of ChatGPT in mental health counseling: An analysis of artificial intelligence generated content differentiation
2025-Aug, Computer methods and programs in biomedicine
IF:4.9Q1
DOI:10.1016/j.cmpb.2025.108864
PMID:40424870
|
研究论文 | 研究评估ChatGPT在心理健康咨询中的效果和情感支持能力,并探讨如何区分AI生成内容与用户生成内容 | 首次从宏观和微观角度评估ChatGPT的心理咨询能力,并开发了区分AI生成内容与用户生成内容的可靠框架 | 未提及具体样本量,且仅评估了ChatGPT 3.5和4.0版本 | 评估ChatGPT在心理健康咨询中的效果和情感支持能力,并探讨AI生成内容的识别方法 | ChatGPT生成的心理健康咨询内容与人类专家生成的内容 | 自然语言处理 | 心理健康问题 | BERTopic算法、深度学习技术、LIME和SHAP解释方法 | LLM(ChatGPT 3.5和4.0)、深度学习模型 | 文本 | NA | NA | NA | NA | NA |
8695 | 2025-10-06 |
Clinical microbiology and artificial intelligence: Different applications, challenges, and future prospects
2025-Jul, Journal of microbiological methods
IF:1.7Q4
DOI:10.1016/j.mimet.2025.107125
PMID:40188989
|
综述 | 概述人工智能在临床微生物学中的最新应用、挑战与未来前景 | 系统整合了AI在微生物光谱分析、图像识别、基因组学及抗微生物药物研发等多领域的创新应用 | 存在伦理考量、数据偏见和训练误差等实施挑战 | 促进临床从业者了解机器学习算法的当前应用并推动其落地实施 | 临床微生物学数据与人工智能算法 | 机器学习 | 传染病 | 拉曼光谱、MALDI-TOF光谱、全基因组测序、定量构效关系模型 | 机器学习,深度学习 | 光谱数据、显微图像、基因组序列、蛋白质序列 | NA | NA | NA | NA | NA |
8696 | 2025-06-09 |
Pancreas segmentation in CT scans: A novel MOMUNet based workflow
2025-Jul, Computers in biology and medicine
IF:7.0Q1
DOI:10.1016/j.compbiomed.2025.110346
PMID:40398261
|
研究论文 | 提出了一种基于MOMUNet的新型工作流程,用于提高CT扫描中胰腺分割的准确性和计算效率 | 引入了外部轮廓裁剪(ECC)和尺寸比例(SR)技术,开发了超轻量级分割模型MOMUNet,显著提升了小腹部器官分割的准确性 | 未明确提及该方法在其他器官或更大规模数据集上的泛化能力 | 提高CT扫描中胰腺分割的准确性和计算效率 | 胰腺和结肠等小腹部器官 | 数字病理 | 胰腺癌 | CT扫描 | MOMUNet | 医学影像 | NIH-Pancreas数据集和MSD-Pancreas数据集 | NA | NA | NA | NA |
8697 | 2025-06-09 |
Estimation of time-to-total knee replacement surgery with multimodal modeling and artificial intelligence
2025-Jul, Computers in biology and medicine
IF:7.0Q1
DOI:10.1016/j.compbiomed.2025.110364
PMID:40435672
|
research paper | 开发并评估了一种基于人工智能的模型,用于通过分析纵向膝关节数据和识别与加速膝关节骨关节炎进展相关的关键特征来预测全膝关节置换术的时间 | 结合深度学习特征与临床和图像评估特征进行生存分析,提高了预测全膝关节置换术时间的准确性 | 预测方法仍需进一步验证以增强其稳健性和准确性 | 预测全膝关节置换术的时间,以帮助医生个性化治疗策略并改善患者预后 | 547名在骨关节炎倡议中接受全膝关节置换术的受试者,以及来自多中心骨关节炎研究和内部医院数据的额外受试者 | digital pathology | geriatric disease | deep learning, Lasso Cox feature selection, random survival forest model | DL, Lasso Cox, random survival forest | clinical variables, MR images, radiographs, quantitative and semi-quantitative assessments | 547名受试者用于模型训练和测试,518名和164名受试者用于外部测试 | NA | NA | NA | NA |
8698 | 2025-06-09 |
Integrating multi-omics data with artificial intelligence to decipher the role of tumor-infiltrating lymphocytes in tumor immunotherapy
2025-Jul, Pathology, research and practice
DOI:10.1016/j.prp.2025.156035
PMID:40435910
|
综述 | 本文综述了人工智能在评估肿瘤浸润淋巴细胞(TILs)中的应用进展,包括自动化定量、亚群识别及空间分布模式分析 | 整合多组学数据与人工智能技术,探索TILs在肿瘤免疫治疗中的作用,并探讨AI与其他新兴技术的结合 | NA | 阐明TILs在各种癌症中的预后价值及其对免疫治疗和新辅助治疗反应的预测能力 | 肿瘤浸润淋巴细胞(TILs) | 数字病理学 | 肿瘤 | 单细胞测序、多重免疫荧光、空间转录组学 | CNN | 图像 | NA | NA | NA | NA | NA |
8699 | 2025-06-09 |
A medical information extraction model with contrastive tuning and tagging layer training
2025-Jul, Computers in biology and medicine
IF:7.0Q1
DOI:10.1016/j.compbiomed.2025.110465
PMID:40446547
|
research paper | 提出了一种新的医学信息提取模型,通过对比调优和标记层训练来减少对标注数据的依赖 | 提出了一种语义引导的表示训练模型,通过对比损失机制在同一语义空间中训练医学文本和医学信息类别的表示 | 未明确提及具体局限性 | 改进医学信息提取任务,减少对大量标注数据的依赖 | 临床文本中的结构化信息 | natural language processing | NA | 对比损失机制 | 语义引导的表示训练模型 | text | CCKS2019和CMeEE数据集 | NA | NA | NA | NA |
8700 | 2025-06-09 |
An attention-based approach for Koopman modeling and predictive control of nonlinear systems
2025-Jul, ISA transactions
IF:6.3Q1
DOI:10.1016/j.isatra.2025.04.011
PMID:40295151
|
research paper | 开发了一种基于注意力的深度学习方法,用于构建Koopman特征函数,以解决非线性系统建模的挑战 | 引入了注意力机制和可逆神经网络架构,以更精确地近似非线性系统与其线性化对应物之间的拓扑共轭关系 | NA | 提高非线性系统的建模精度和预测控制能力 | 非线性系统的建模与控制 | machine learning | NA | deep learning, attention mechanism, invertible neural networks | CNN (conditional affine coupling layers) | numerical data | numerical examples and a physical experiment | NA | NA | NA | NA |