本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!
除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
8761 | 2025-03-05 |
Automatic multimodal registration of cone-beam computed tomography and intraoral scans: a systematic review and meta-analysis
2025-Jan-29, Clinical oral investigations
IF:3.1Q1
DOI:10.1007/s00784-025-06183-x
PMID:39878846
|
系统综述与元分析 | 本文系统回顾和分析了锥形束计算机断层扫描(CBCT)与口内扫描(IOS)自动多模态配准技术的最新进展及其在牙科中的临床意义 | 对比了几何基础方法与人工智能(AI)技术在CBCT和IOS配准中的应用,揭示了AI方法在自动化和鲁棒性方面的显著改进 | 研究中存在配准标志不稳定或数据集多样性有限等挑战,需进一步研究以确保在复杂临床场景中的稳定性 | 评估CBCT和IOS自动多模态配准技术的最新进展及其在牙科中的临床意义 | 锥形束计算机断层扫描(CBCT)和口内扫描(IOS) | 数字病理 | NA | 几何基础方法和人工智能(AI)技术 | 深度学习模型 | 3D图像数据 | 493篇文章中筛选出22篇符合条件的研究 |
8762 | 2025-03-05 |
End-To-End Prediction of Knee Osteoarthritis Progression With Multimodal Transformers
2025-Jan-29, IEEE journal of biomedical and health informatics
IF:6.7Q1
DOI:10.1109/JBHI.2025.3536170
PMID:40031337
|
研究论文 | 本研究利用深度学习中的Transformer模型,融合多模态膝关节成像数据,预测膝关节骨关节炎(KOA)的进展 | 首次使用Transformer模型融合多模态膝关节成像数据,提供了一种端到端的KOA进展预测框架,并公开了源代码和预训练模型 | 研究结果仍需进一步验证,特别是在不同临床环境中的应用效果 | 预测膝关节骨关节炎(KOA)的进展,以增强临床试验设计 | 膝关节骨关节炎(KOA)患者 | 计算机视觉 | 骨关节炎 | 深度学习 | Transformer | 图像 | 3967/2421例来自骨关节炎倡议(Osteoarthritis Initiative)的数据 |
8763 | 2025-03-05 |
Class-Agnostic Feature-Learning-Based Deep-Learning Model for Robust Melanoma Prediction
2025-Jan-28, IEEE journal of biomedical and health informatics
IF:6.7Q1
DOI:10.1109/JBHI.2025.3535536
PMID:40031346
|
研究论文 | 本研究开发了一种基于类无关激活映射(CAAMs)的深度学习模型,用于提高黑色素瘤预测的准确性和可靠性 | 使用类无关激活映射(CAAMs)来解决图像变异性和变换鲁棒性问题,从而提高诊断准确性和可靠性 | 未明确提及具体局限性 | 开发一种鲁棒的深度学习模型,用于黑色素瘤预测 | 黑色素瘤和痣的皮肤病变图像 | 计算机视觉 | 黑色素瘤 | 深度学习 | ConvNeXt, ResNet | 图像 | ISIC 2017和2019数据集 |
8764 | 2025-03-05 |
Progressive Knowledge Transfer Network Based on Human Visual Perception Mechanism for No-Reference Point Cloud Quality Assessment
2025-Jan-22, IEEE transactions on visualization and computer graphics
IF:4.7Q1
DOI:10.1109/TVCG.2025.3532651
PMID:40031145
|
研究论文 | 本文提出了一种基于人类视觉感知机制的无参考点云质量评估深度学习网络PKT-PCQA,通过渐进知识转移将粗粒度质量分类知识转化为细粒度质量预测任务 | PKT-PCQA网络利用局部和全局特征,以及基于空间和通道注意力模块的注意力机制,模拟人类视觉系统进行点云质量评估 | 未提及具体局限性 | 研究无参考点云质量评估方法,以提高点云压缩和通信等应用中的质量评估效果 | 点云数据 | 计算机视觉 | NA | 深度学习 | PKT-PCQA | 点云数据 | 三个大型独立的点云评估数据集 |
8765 | 2025-03-05 |
Knowledge-Based Deep Learning for Time-Efficient Inverse Dynamics
2025-Jan-17, IEEE transactions on neural systems and rehabilitation engineering : a publication of the IEEE Engineering in Medicine and Biology Society
IF:4.8Q1
DOI:10.1109/TNSRE.2025.3530992
PMID:40031238
|
研究论文 | 本文提出了一种基于知识的深度学习框架,用于高效的时间反演动力学分析,能够直接从关节运动学数据预测肌肉激活和肌肉力量 | 提出了一种无需标签信息即可训练的深度学习框架,结合前向动力学和预选的反演动力学生理标准,通过特定的损失函数指导神经网络训练 | 实验验证仅限于两个数据集,样本量较小,且仅包括健康受试者 | 提高神经康复和肌肉骨骼疾病治疗中肌肉激活和肌肉力量估计的效率和准确性 | 肌肉激活和肌肉力量 | 机器学习 | 肌肉骨骼疾病 | 深度学习 | BiGRU(双向门控循环单元) | 时间序列数据 | 两个数据集,包括一个基准上肢运动数据集和一个自收集的下肢运动数据集,涉及六名健康受试者 |
8766 | 2025-03-05 |
Combining Pre- and Post-Demosaicking Noise Removal for RAW Video
2025-Jan-15, IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
IF:10.8Q1
DOI:10.1109/TIP.2025.3527886
PMID:40031011
|
研究论文 | 本文提出了一种结合去马赛克前后噪声去除的自相似性去噪方案,用于Bayer模式CFA视频数据 | 提出了一种自相似性去噪方案,结合去马赛克前后的去噪器,并通过时间轨迹预滤波步骤进一步改善纹理重建 | 现代神经网络在适应新噪声水平和场景方面仍有困难 | 提高去噪算法的质量,使其适用于现实世界的视频拍摄 | Bayer模式CFA视频数据 | 计算机视觉 | NA | 深度学习 | 神经网络 | 视频 | NA |
8767 | 2025-03-05 |
A Region and Category Confidence-Based Multi-Task Network for Carotid Ultrasound Image Segmentation and Classification
2025-Jan-14, IEEE journal of biomedical and health informatics
IF:6.7Q1
DOI:10.1109/JBHI.2025.3529483
PMID:40031080
|
研究论文 | 本文提出了一种基于区域和类别置信度的多任务网络(RCCM-Net),用于颈动脉超声图像的分割和分类 | 该网络通过区域置信模块(RCM)和样本类别置信模块(CCM)利用分割和分类任务之间的相关性,提高了性能 | NA | 提高颈动脉斑块超声图像的分割和分类性能,以辅助动脉粥样硬化的治疗和中风风险评估 | 颈动脉斑块的超声图像 | 计算机视觉 | 心血管疾病 | 深度学习 | 多任务学习框架(RCCM-Net) | 2D超声图像 | 1270张颈动脉斑块的2D超声图像 |
8768 | 2025-03-05 |
Non-invasive Detection of Adenoid Hypertrophy Using Deep Learning Based on Heart-Lung Sounds
2025-Jan-10, IEEE journal of biomedical and health informatics
IF:6.7Q1
DOI:10.1109/JBHI.2025.3527403
PMID:40030964
|
研究论文 | 本文提出了一种基于深度学习的心肺音非侵入性检测方法,用于诊断儿童腺样体肥大 | 首次利用心肺音数据结合深度学习模型进行腺样体肥大的非侵入性检测,提供了一种新的诊断方法 | 未提及样本的具体数量及多样性,可能影响模型的泛化能力 | 开发一种非侵入性的腺样体肥大检测方法,以替代现有的侵入性或辐射性诊断技术 | 儿童腺样体肥大患者 | 数字病理 | 上呼吸道疾病 | 深度学习 | CNN, LSTM, GAN | 声音数据 | NA |
8769 | 2025-03-05 |
Adaptive Neural Message Passing for Inductive Learning on Hypergraphs
2025-Jan, IEEE transactions on pattern analysis and machine intelligence
IF:20.8Q1
DOI:10.1109/TPAMI.2024.3434483
PMID:39058615
|
研究论文 | 本文提出了一种新的超图学习框架HyperMSG,采用模块化的两级神经消息传递策略,在超边内和超边间准确高效地传播信息 | HyperMSG框架通过自适应学习节点度中心性的注意力权重,量化节点的局部和全局重要性,捕捉超图的结构特性,且具有归纳性,能在未见过的节点上进行推理 | NA | 解决现有超图学习方法将超图结构转换为图结构导致的信息丢失和次优利用问题,提升超图学习的表达能力和效率 | 超图结构数据 | 机器学习 | NA | 神经消息传递 | HyperMSG | 图数据 | 多种任务和数据集 |
8770 | 2025-03-05 |
SurroFlow: A Flow-Based Surrogate Model for Parameter Space Exploration and Uncertainty Quantification
2025-Jan, IEEE transactions on visualization and computer graphics
IF:4.7Q1
DOI:10.1109/TVCG.2024.3456372
PMID:39250378
|
研究论文 | 本文介绍了一种基于归一化流的代理模型SurroFlow,用于学习仿真参数与仿真输出之间的可逆变换,支持不确定性量化和高效参数空间探索 | 提出了一种新的基于归一化流的代理模型SurroFlow,支持不确定性量化、高效参数空间探索和逆向预测 | 未提及具体局限性 | 提高科学代理模型的可靠性和探索能力,同时降低计算成本 | 仿真参数与仿真输出之间的关系 | 机器学习 | NA | 归一化流 | SurroFlow | 仿真数据 | 未提及具体样本数量 |
8771 | 2025-03-05 |
Interactive Design-of-Experiments: Optimizing a Cooling System
2025-Jan, IEEE transactions on visualization and computer graphics
IF:4.7Q1
DOI:10.1109/TVCG.2024.3456356
PMID:39250379
|
研究论文 | 本文提出了一种交互式视觉优化方法,用于优化冷却系统,特别是在电动汽车的座舱和电池冷却中的应用 | 结合深度学习模型和数值模拟,通过交互式p-h图引导迭代优化过程,提供了一种新的半自动优化方法 | 深度学习模型仅作为冷却系统逆过程的近似,且目标特性可能根据不同的竞争目标选择,可能导致优化过程复杂化 | 优化冷却系统,特别是在电动汽车中的应用 | 冷却系统,特别是电动汽车的座舱和电池冷却系统 | 机器学习 | NA | 深度学习(DL)模型,数值模拟 | 深度学习模型 | 模拟数据 | NA |
8772 | 2025-03-05 |
ParamsDrag: Interactive Parameter Space Exploration via Image-Space Dragging
2025-Jan, IEEE transactions on visualization and computer graphics
IF:4.7Q1
DOI:10.1109/TVCG.2024.3456338
PMID:39250408
|
研究论文 | 本文介绍了ParamsDrag模型,通过直接与可视化交互来探索参数空间,以提高数值模拟中参数调整的效率和直观性 | 提出了一种新的交互式参数空间探索方法,通过直接拖动可视化中的结构相关特征来直观调整和优化参数 | 未提及具体局限性 | 提高数值模拟中参数调整的效率和直观性 | 数值模拟中的参数空间 | 计算机视觉 | NA | 深度学习 | ParamsDrag | 图像 | NA |
8773 | 2025-03-05 |
Dynamic Routing and Knowledge Re-Learning for Data-Free Black-Box Attack
2025-Jan, IEEE transactions on pattern analysis and machine intelligence
IF:20.8Q1
DOI:10.1109/TPAMI.2024.3469952
PMID:39331554
|
研究论文 | 本文提出了一种新的动态路由和知识再学习框架(DraKe),用于数据自由的黑盒攻击,通过动态生成替代模型结构并重新学习困难样本,有效提高了攻击效果 | 提出了动态路由和知识再学习框架(DraKe),通过动态生成替代模型结构和重新学习困难样本,解决了现有方法在静态替代模型结构、一次性使用硬合成样本以及依赖目标模型数据统计的局限性 | 在线数据生成只能学习一次,存在固有的局限性 | 研究数据自由的黑盒攻击方法,提高对目标模型的攻击效果 | 深度学习模型 | 机器学习 | NA | NA | 动态替代模型结构 | 图像 | 四个公共图像分类数据集和一个面部识别基准 |
8774 | 2025-03-05 |
Understanding Episode Hardness in Few-Shot Learning
2025-Jan, IEEE transactions on pattern analysis and machine intelligence
IF:20.8Q1
DOI:10.1109/TPAMI.2024.3476075
PMID:39378258
|
研究论文 | 本文探讨了少样本学习中的“情节硬度”问题,并提出了一种新的预采样硬度评估技术IFDR | 首次对影响情节硬度的关键因素进行了代数分析,并提出了高效的预采样硬度评估技术IFDR,以及两种采样方案CL和CPL | NA | 研究少样本学习中情节硬度的影响因素及其评估方法 | 少样本学习中的情节 | 机器学习 | NA | IFDR(逆费舍尔判别比) | NA | NA | NA |
8775 | 2025-03-05 |
Latent Diffusion Enhanced Rectangle Transformer for Hyperspectral Image Restoration
2025-Jan, IEEE transactions on pattern analysis and machine intelligence
IF:20.8Q1
DOI:10.1109/TPAMI.2024.3475249
PMID:39383081
|
研究论文 | 本文提出了一种潜在扩散增强的矩形Transformer方法,用于高光谱图像(HSI)的恢复,解决了现有方法在探索HSI空间非局部自相似性和光谱低秩特性方面的挑战 | 引入了多形状空间矩形自注意力模块和光谱潜在扩散增强模块,分别用于捕捉非局部空间相似性和生成图像特定的潜在字典以提取低秩向量 | 未明确提及具体限制,但可能包括计算复杂度高或对特定类型HSI的适应性有限 | 提高高光谱图像恢复的效果,包括去噪、超分辨率、重建和修复 | 高光谱图像 | 计算机视觉 | NA | 潜在扩散模型 | Transformer | 图像 | 在四个常见的高光谱图像恢复任务上进行了实验 |
8776 | 2025-03-05 |
Image Copy-Move Forgery Detection via Deep PatchMatch and Pairwise Ranking Learning
2025, IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
IF:10.8Q1
DOI:10.1109/TIP.2024.3482191
PMID:39453802
|
研究论文 | 本文提出了一种新颖的端到端图像复制-移动伪造检测框架,结合了传统方法和深度学习的优势 | 提出了一种深度跨尺度PatchMatch方法和成对排序学习框架,用于精确定位复制-移动区域并区分源区域和目标区域 | 尽管在多种复制-移动场景中表现出色,但未提及在极端复杂背景下的性能 | 提高图像复制-移动伪造检测的准确性和泛化能力 | 图像中的复制-移动伪造区域 | 计算机视觉 | NA | 深度学习 | 深度跨尺度PatchMatch, 成对排序学习框架 | 图像 | 未明确提及样本数量 |
8777 | 2025-03-05 |
Widespread use of ChatGPT and other Artificial Intelligence tools among medical students in Uganda: A cross-sectional study
2025, PloS one
IF:2.9Q1
DOI:10.1371/journal.pone.0313776
PMID:39787055
|
研究论文 | 本文评估了乌干达医学生对ChatGPT及其他AI工具的使用情况 | 首次在乌干达医学生中评估了ChatGPT及其他AI工具的广泛使用情况,并探讨了其使用目的和影响因素 | 研究仅限于乌干达的四所公立大学,可能无法推广到其他地区或国家 | 评估乌干达医学生对ChatGPT及其他AI工具的使用情况及其影响因素 | 乌干达四所公立大学的医学生 | 自然语言处理 | NA | 描述性横断面研究 | ChatGPT | 问卷调查数据 | 564名医学生 |
8778 | 2025-03-05 |
The classification of absence seizures using power-to-power cross-frequency coupling analysis with a deep learning network
2025, Frontiers in neuroinformatics
IF:2.5Q3
DOI:10.3389/fninf.2025.1513661
PMID:39995596
|
研究论文 | 本文提出了一种基于功率-功率跨频耦合分析和深度学习网络的失神发作分类方法 | 首次在癫痫分类文献中探索了功率-功率耦合(PPC)的应用,并结合堆叠稀疏自编码器(SSAE)进行自动分类 | 样本量较小,仅包含12名患者的94次失神发作 | 开发一种自动分类失神发作的方法 | 失神发作的脑电图(EEG)数据 | 机器学习 | 癫痫 | 功率-功率跨频耦合分析 | 堆叠稀疏自编码器(SSAE) | 脑电图(EEG) | 12名患者的94次失神发作 |
8779 | 2025-03-05 |
Deep Learning Models for Predicting the Recurrence of Idiopathic Granulomatous Mastitis
2025, Journal of inflammation research
IF:4.2Q2
DOI:10.2147/JIR.S499512
PMID:40026307
|
研究论文 | 本研究评估并比较了不同机器学习模型在预测特发性肉芽肿性乳腺炎(IGM)复发中的表现 | 首次比较了逻辑回归、随机森林和神经网络在预测IGM复发中的性能,并发现神经网络模型表现最佳 | 研究基于回顾性数据,可能存在选择偏差,且样本量相对较小 | 评估不同机器学习模型在预测IGM复发中的性能 | 212名被诊断为IGM的患者 | 机器学习 | 乳腺疾病 | 机器学习 | 逻辑回归、随机森林、神经网络 | 患者数据(包括血清学标志物、肿瘤特征和治疗历史) | 212名患者 |
8780 | 2025-03-05 |
Multiomics-Based Deep Learning Prediction of Prognosis and Therapeutic Response in Patients With Extensive-Stage Small Cell Lung Cancer Receiving Chemoimmunotherapy: A Retrospective Cohort Study
2025, International journal of general medicine
IF:2.1Q2
DOI:10.2147/IJGM.S506485
PMID:40026810
|
研究论文 | 本研究旨在开发一个临床早期预警预测模型,以评估广泛期小细胞肺癌(ES-SCLC)患者的预后和对化疗免疫治疗的反应,从而指导临床决策 | 利用多组学数据和深度学习技术,开发了一个预测模型,用于评估ES-SCLC患者的治疗反应和预后,特别是随机森林模型在预测准确性和预后风险评估方面表现出色 | 研究为回顾性分析,可能存在选择偏倚,且样本量相对较小,需要进一步的前瞻性研究验证 | 评估广泛期小细胞肺癌患者的预后和对化疗免疫治疗的反应 | 309名在包头肿瘤医院住院的广泛期小细胞肺癌患者 | 数字病理学 | 肺癌 | 机器学习算法(包括随机森林、决策树、人工神经网络和广义线性回归) | 随机森林、决策树、人工神经网络、广义线性回归 | 临床数据和放射组学参数 | 309名广泛期小细胞肺癌患者 |