本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!
除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
8781 | 2025-01-14 |
Synchronous Analysis of Speech Production and Lips Movement to Detect Parkinson's Disease Using Deep Learning Methods
2024-Dec-31, Diagnostics (Basel, Switzerland)
DOI:10.3390/diagnostics15010073
PMID:39795601
|
研究论文 | 本文介绍了一种新的方法,通过同步融合从语音记录和对应的唇部运动视频中提取的信息来检测帕金森病 | 首次提出了一种同步融合语音和唇部运动信息的双模态方法,并使用了基于注意力机制的串联投影策略 | 未提及具体样本量或数据集的详细信息 | 提高帕金森病的自动检测和监测准确性 | 帕金森病患者 | 数字病理学 | 帕金森病 | 深度学习 | 基于注意力机制的串联投影模型 | 语音和视频 | NA |
8782 | 2025-01-14 |
Task Offloading with LLM-Enhanced Multi-Agent Reinforcement Learning in UAV-Assisted Edge Computing
2024-Dec-31, Sensors (Basel, Switzerland)
DOI:10.3390/s25010175
PMID:39796966
|
研究论文 | 本文提出了一种创新的多智能体深度学习框架,用于优化无人机辅助边缘计算环境中的任务卸载和轨迹规划 | 结合QTRAN算法与大型语言模型(LLM)进行区域分解,并利用图卷积网络(GCN)与自注意力机制有效管理子区域间关系 | 未提及具体实验环境或数据集的局限性 | 优化无人机辅助边缘计算环境中的任务卸载和轨迹规划 | 无人机集群和用户设备(UE) | 机器学习 | NA | 多智能体强化学习、大型语言模型(LLM)、图卷积网络(GCN) | QTRAN、GCN、自注意力机制 | 模拟数据 | 未提及具体样本数量 |
8783 | 2025-01-14 |
SmartSkin-XAI: An Interpretable Deep Learning Approach for Enhanced Skin Cancer Diagnosis in Smart Healthcare
2024-Dec-30, Diagnostics (Basel, Switzerland)
DOI:10.3390/diagnostics15010064
PMID:39795592
|
研究论文 | 本文提出了一种名为SmartSkin-XAI的可解释深度学习方法,用于增强智能医疗中的皮肤癌诊断 | 结合了微调的DenseNet121模型和XAI技术,提供了透明决策过程,平衡了准确性和可解释性 | 未提及具体局限性 | 提高皮肤癌(特别是黑色素瘤)的早期检测和患者管理 | 皮肤癌(黑色素瘤) | 计算机视觉 | 皮肤癌 | XAI(可解释人工智能) | DenseNet121 | 图像 | ISIC数据集和Kaggle数据集 |
8784 | 2025-01-14 |
Effect of Depth Band Replacement on Red, Green and Blue Image for Deep Learning Weed Detection
2024-Dec-30, Sensors (Basel, Switzerland)
DOI:10.3390/s25010161
PMID:39796952
|
研究论文 | 本研究探讨了在深度学习杂草检测中,用深度数据替换RGB图像中的一个波段对YOLOv8模型性能的影响 | 提出了一种用深度数据替换RGB图像中的一个波段的方法,以解决传统RGB方法在检测杂草时因纹理和结构相似性而导致的困难 | 使用RGBD系统计算成本高,不适合小型轻量级机器人 | 研究深度数据替换RGB波段对YOLOv8模型在杂草检测中性能的影响 | 牧场中的杂草 | 计算机视觉 | NA | 深度学习 | YOLOv8 | 图像 | NA |
8785 | 2025-01-14 |
A Deep Learning Model for Accurate Segmentation of the Drosophila melanogaster Brain from Micro-CT Imaging
2024-Dec-30, bioRxiv : the preprint server for biology
DOI:10.1101/2024.12.30.630782
PMID:39803485
|
研究论文 | 本文介绍了一种深度学习模型,用于从Micro-CT成像中准确分割果蝇大脑 | 该模型仅需1-3张Micro-CT图像即可训练,且适用于不同组织对比染色、扫描仪型号和基因型 | 需要依赖预训练的神经网络和少量用户知识 | 开发一种高效的深度学习模型,用于自动化分析Micro-CT图像 | 果蝇(Drosophila melanogaster)大脑 | 计算机视觉 | NA | Micro-CT成像 | 预训练的神经网络 | 三维图像 | 1-3张Micro-CT图像 |
8786 | 2025-01-14 |
Improving Imitation Skills in Children with Autism Spectrum Disorder Using the NAO Robot and a Human Action Recognition
2024-Dec-29, Diagnostics (Basel, Switzerland)
DOI:10.3390/diagnostics15010060
PMID:39795588
|
研究论文 | 本研究探讨了使用NAO机器人和人类动作识别算法来提高自闭症谱系障碍儿童的模仿技能 | 结合机器人技术和深度学习算法,用于自闭症儿童的模仿技能训练 | 研究样本量未明确提及,且未讨论长期效果 | 探索机器人技术是否能够提高自闭症儿童的模仿技能并支持治疗师 | 自闭症谱系障碍儿童 | 机器人技术 | 自闭症谱系障碍 | 深度学习 | 人类动作识别算法 | 视频数据 | 未明确提及 |
8787 | 2025-01-14 |
Design, Development, and Testing of Machine Learning Models to Estimate Properties of Friction Stir Welded Joints
2024-Dec-29, Materials (Basel, Switzerland)
DOI:10.3390/ma18010094
PMID:39795739
|
研究论文 | 本文使用六种监督机器学习模型估计摩擦搅拌焊接接头的极限抗拉强度(UTS)和硬度 | 使用深度学习人工神经网络(ANN)实现了最高准确度,并成功估计了摩擦搅拌焊接接头的UTS和硬度 | NA | 估计摩擦搅拌焊接接头的极限抗拉强度和硬度 | 摩擦搅拌焊接接头 | 机器学习 | NA | 监督机器学习 | 线性回归、支持向量回归、决策树回归、随机森林回归、K近邻、人工神经网络(ANN) | 数值数据 | 200个数据集 |
8788 | 2025-01-14 |
A Systematic Review of the Applications of Deep Learning for the Interpretation of Positron Emission Tomography Images of Patients with Lymphoma
2024-Dec-29, Cancers
IF:4.5Q1
DOI:10.3390/cancers17010069
PMID:39796698
|
系统综述 | 本文系统综述了深度学习在淋巴瘤患者正电子发射断层扫描(PET)图像解释中的应用 | 首次系统性地总结了深度学习在淋巴瘤PET图像分析中的应用,涵盖了病变检测、组织学分类、鉴别诊断、代谢肿瘤体积量化及治疗反应和生存预测等多个医学任务 | 部分研究存在参与者数量较少和缺乏外部验证的问题 | 评估深度学习在淋巴瘤PET图像解释中的应用效果 | 淋巴瘤患者的PET图像 | 医学影像分析 | 淋巴瘤 | 深度学习 | 深度学习模型 | 图像 | 21项研究,共9402名参与者 |
8789 | 2025-01-14 |
Improved Intelligent Condition Monitoring with Diagnostic Indicator Selection
2024-Dec-29, Sensors (Basel, Switzerland)
DOI:10.3390/s25010137
PMID:39796927
|
研究论文 | 本研究开发了一种预测性维护系统,专注于特征选择以检测和分类风力涡轮机叶片中的模拟缺陷 | 提出了一种基于相关性分析并结合全面视觉评估的结构化特征选择方法,保留了关键的领域特定信息,避免了故障指标的误解 | 特征减少并未同样提升深度学习模型的性能指标 | 开发一种更有效的预测性维护系统,用于风力涡轮机叶片的缺陷检测和分类 | 风力涡轮机叶片的模拟缺陷 | 机器学习 | NA | 相关性分析 | 深度神经网络, 投票分类器 | 振动数据 | NA |
8790 | 2025-01-14 |
Improved Consistency of Lung Nodule Categorization in CT Scans with Heterogeneous Slice Thickness by Deep Learning-Based 3D Super-Resolution
2024-Dec-28, Diagnostics (Basel, Switzerland)
DOI:10.3390/diagnostics15010050
PMID:39795578
|
研究论文 | 本文提出了一种基于深度学习的3D超分辨率方法,用于从异质性厚层CT图像生成薄层CT图像,以提高肺结节体积评估的准确性 | 提出了一种新的深度学习方法,用于处理异质性厚层CT图像,生成高质量的薄层CT图像,从而提高肺结节体积测量的准确性和一致性 | 研究主要依赖于放射科医生的感知评估和定量测量,未涉及大规模临床验证 | 提高肺结节体积评估的准确性,促进更可靠的早期肺结节检测 | 肺结节 | 计算机视觉 | 肺癌 | 深度学习 | 3D超分辨率模型 | CT图像 | 未明确提及样本数量 |
8791 | 2025-01-14 |
Dynamic Prediction of Physical Exertion: Leveraging AI Models and Wearable Sensor Data During Cycling Exercise
2024-Dec-28, Diagnostics (Basel, Switzerland)
DOI:10.3390/diagnostics15010052
PMID:39795580
|
研究论文 | 本研究旨在探索利用可穿戴设备收集的生理信号预测体力消耗的机器学习方法 | 结合特征选择算法与先进的机器学习和深度学习技术,用于预测体力消耗水平 | 样本量较小,仅涉及27名健康参与者 | 预测体力消耗水平 | 27名健康参与者在控制条件下的骑行运动 | 机器学习 | NA | ECG、心率、血氧饱和度、踏板速度(RPM)和心率变异性(HRV) | LSTM、传统机器学习模型 | 生理信号数据 | 27名健康参与者 |
8792 | 2025-01-14 |
Artificial Intelligence-Based Classification and Segmentation of Bladder Cancer in Cystoscope Images
2024-Dec-28, Cancers
IF:4.5Q1
DOI:10.3390/cancers17010057
PMID:39796686
|
研究论文 | 本研究利用VGG19和Deeplab v3+深度学习模型对膀胱镜图像进行分类和分割,以提高膀胱癌的诊断准确性 | 首次将VGG19和Deeplab v3+模型应用于膀胱镜图像的分类和分割,并展示了高准确性和分割效果 | 研究依赖于标注数据的质量,且样本量相对有限 | 提高膀胱癌的诊断准确性,特别是对模糊病变的识别 | 膀胱镜图像 | 计算机视觉 | 膀胱癌 | 深度学习 | VGG19, Deeplab v3+ | 图像 | 772名患者的膀胱镜图像 |
8793 | 2025-01-14 |
Physics-Constrained Deep Learning for Security Ink Colorimetry with Attention-Based Spectral Sensing
2024-Dec-28, Sensors (Basel, Switzerland)
DOI:10.3390/s25010128
PMID:39796919
|
研究论文 | 本文提出了一种基于物理约束的深度学习框架,用于高精度安全墨水比色法,集成了物理信息神经网络架构、先进的注意力机制和贝叶斯优化框架 | 该框架在颜色预测精度上达到了前所未有的水平(CIEDE2000 (ΔE00): 0.70 ± 0.08),特征提取效率提高了58.3%,并通过贝叶斯优化框架确保参数调优的鲁棒性 | NA | 开发一种高精度的安全墨水比色法,以应对全球安全和商业中的伪造问题 | 安全墨水 | 机器学习 | NA | 深度学习 | 物理信息神经网络架构 | 光谱数据 | 1500个工业样品 |
8794 | 2025-01-14 |
Leveraging Thermal Infrared Imaging for Pig Ear Detection Research: The TIRPigEar Dataset and Performances of Deep Learning Models
2024-Dec-27, Animals : an open access journal from MDPI
IF:2.7Q1
DOI:10.3390/ani15010041
PMID:39794984
|
研究论文 | 本文介绍了TIRPigEar数据集,该数据集包含23,189张猪耳朵的热红外图像,用于训练猪耳朵检测模型并分析猪的温度信息 | 首次建立了包含大量猪耳朵热红外图像的数据集,并验证了其在YOLOv9m模型上的最佳性能 | 猪耳朵的温度不能直接代表核心体温,且数据集依赖于手动标注 | 通过热红外成像技术检测猪耳朵信息,为精准畜牧业提供非接触、快速、有效的方法 | 猪耳朵 | 计算机视觉 | NA | 热红外成像 | YOLOv9m | 图像 | 23,189张热红外图像,69,567个标注文件 |
8795 | 2025-01-14 |
Automatic Reproduction of Natural Head Position in Orthognathic Surgery Using a Geometric Deep Learning Network
2024-Dec-27, Diagnostics (Basel, Switzerland)
DOI:10.3390/diagnostics15010042
PMID:39795570
|
研究论文 | 本文开发了一种几何深度学习网络(NHP-Net),用于从CT扫描中自动再现自然头位(NHP),以提高正颌手术的精确性 | 开发了一种新的几何深度学习网络(NHP-Net),用于自动从CT扫描中再现自然头位,解决了传统方法的可重复性问题 | 研究仅基于150名正颌手术患者的数据集,样本量相对较小 | 提高正颌手术中自然头位(NHP)的准确性和效率,以优化手术计划和改善患者结果 | 正颌手术患者 | 计算机视觉 | NA | CT扫描 | 几何深度学习网络(NHP-Net) | 三维头骨网格和点云数据 | 150名正颌手术患者 |
8796 | 2025-01-14 |
Reconstruction of Optical Coherence Tomography Images from Wavelength Space Using Deep Learning
2024-Dec-27, Sensors (Basel, Switzerland)
DOI:10.3390/s25010093
PMID:39796883
|
研究论文 | 本文提出了一种基于深度学习的简化且计算效率高的方法,直接从波长域重建去斑的光学相干断层扫描(OCT)图像 | 提出了一种直接从波长域重建OCT图像的深度学习方法,减少了传统方法对硬件资源的依赖和计算复杂性 | 未提及具体的数据集大小或实验样本数量,可能影响方法的普适性验证 | 旨在提高OCT图像重建的质量和计算效率 | 光学相干断层扫描(OCT)图像 | 计算机视觉 | NA | 深度学习 | CNN(卷积神经网络) | 图像 | NA |
8797 | 2025-01-14 |
Fault Diagnosis of Lithium Battery Modules via Symmetrized Dot Pattern and Convolutional Neural Networks
2024-Dec-27, Sensors (Basel, Switzerland)
DOI:10.3390/s25010094
PMID:39796884
|
研究论文 | 本文提出了一种结合对称点模式(SDP)方法和卷积神经网络(CNN)的混合算法,用于锂电池模块的故障检测 | 结合SDP方法和CNN进行锂电池故障检测,实现了99.9%的识别准确率 | NA | 开发一种高效的锂电池模块故障检测方法 | 锂电池模块 | 机器学习 | NA | 对称点模式(SDP)方法,卷积神经网络(CNN) | CNN | 图像 | 共收集3000个样本,每种故障类型400个用于训练,200个用于测试 |
8798 | 2025-01-14 |
Time-Series Forecasting of PM2.5 and PM10 Concentrations Based on the Integration of Surveillance Images
2024-Dec-27, Sensors (Basel, Switzerland)
DOI:10.3390/s25010095
PMID:39796885
|
研究论文 | 本文提出了一种双通道深度学习模型,结合监控图像和多源数值数据进行空气质量预测,特别是PM2.5和PM10浓度的时间序列预测 | 创新点在于结合了VGG16和LSTM的混合网络,能够从监控图像序列中捕捉详细的时空特征,并结合大气、气象和时间数据,实现更准确的空气质量预测 | 未来的工作需要扩展数据集并优化网络架构,以进一步提高预测精度和计算效率 | 研究目标是提高空气质量预测的准确性和鲁棒性,以减轻污染相关危害并保护公共健康 | 研究对象是PM2.5和PM10浓度的预测 | 计算机视觉 | NA | 深度学习 | VGG16-LSTM | 图像和数值数据 | 2021年上海数据集以及台湾高雄两个站点的数据集 |
8799 | 2025-01-14 |
CINet: A Constraint- and Interaction-Based Network for Remote Sensing Change Detection
2024-Dec-27, Sensors (Basel, Switzerland)
DOI:10.3390/s25010103
PMID:39796892
|
研究论文 | 本文提出了一种基于约束和交互的网络(CINet),用于遥感变化检测(RSCD),通过引入约束机制和跨空间通道注意力模块(CSCA)来提高变化检测的准确性 | 提出了约束机制和跨空间通道注意力模块(CSCA),有效增强了双时相图像特征图之间的信息交互和变化检测的准确性 | 未明确提及具体局限性 | 提高遥感变化检测的准确性和有效性 | 双时相遥感图像 | 计算机视觉 | NA | 深度学习 | CINet | 图像 | 六个广泛使用的遥感基准数据集(如LEVIR-CD数据集) |
8800 | 2025-01-14 |
Damage Detection and Identification on Elevator Systems Using Deep Learning Algorithms and Multibody Dynamics Models
2024-Dec-27, Sensors (Basel, Switzerland)
DOI:10.3390/s25010101
PMID:39796893
|
研究论文 | 本文开发了一种结合深度学习算法和多体动力学模型的新方法,用于电梯系统的损伤检测和识别 | 结合物理测量和高保真多体动力学模型生成的振动数据,与深度学习算法结合,用于电梯系统的损伤检测和分类 | 数据可能稀缺或不存在,可能影响整体检测过程 | 开发一种用于电梯系统的损伤检测和识别方法,以提高维护和修复过程的效率 | 电梯系统 | 机器学习 | NA | 多体动力学模拟,深度学习算法 | 自编码器,卷积神经网络(CNN) | 振动数据 | NA |