本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新(使用关键词“['deep learning']”过滤),已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!


除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价19.9元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
| 序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 | 算法框架 | 模型架构 | 性能指标 | 计算资源 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 8861 | 2025-06-18 |
High-resolution RGB image dataset for wheat seed varietal identification and purity assessment
2025-Aug, Data in brief
IF:1.0Q3
DOI:10.1016/j.dib.2025.111690
PMID:40521154
|
research paper | 该论文介绍了一个公开可用的高分辨率小麦种子图像数据集,用于小麦品种识别和纯度评估 | 提供了一个特定地区的高分辨率小麦种子图像数据集,填补了现有数据的空白 | 数据集仅包含巴基斯坦三个主要小麦品种,可能无法代表所有地区的小麦品种 | 解决小麦种子品种识别和纯度评估的问题,以提高小麦产量 | 小麦种子(Akbar-19, Dilkash-20, Urooj-22三个品种) | computer vision | NA | NA | NA | image | 每个品种125粒纯种种子,共375粒 | NA | NA | NA | NA |
| 8862 | 2025-06-18 |
Multitask Deep Learning for Automated Detection of Endoleak at Digital Subtraction Angiography during Endovascular Aneurysm Repair
2025-07, Radiology. Artificial intelligence
DOI:10.1148/ryai.240392
PMID:40266029
|
research paper | 开发并评估一种新型多任务深度学习框架,用于在真实世界的腹主动脉瘤血管内修复术(EVAR)过程中自动检测和定位主动脉数字减影血管造影(DSA)中的内漏 | 提出了一种基于多任务学习的卷积神经网络,用于内漏的自动检测和定位,性能优于人类专家 | 研究为回顾性设计,样本量相对较小(220例患者) | 开发自动化工具以提高EVAR手术中内漏检测的准确性和效率 | 接受EVAR手术患者的主动脉DSA图像 | digital pathology | cardiovascular disease | digital subtraction angiography | CNN | image | 220例患者(中位年龄74岁,181名男性) | NA | NA | NA | NA |
| 8863 | 2025-06-18 |
Automated classification of oral potentially malignant disorders and oral squamous cell carcinoma using a convolutional neural network framework: a cross-sectional study
2025-Jul, Lancet regional health. Americas
DOI:10.1016/j.lana.2025.101138
PMID:40519355
|
研究论文 | 本研究旨在开发和评估用于自动分类口腔潜在恶性病变(OPMD)和口腔鳞状细胞癌(OSCC)临床图像的AI模型,并探索使用Grad-CAM进行可解释性分析 | 采用深度学习方法和Grad-CAM技术,实现了对OPMD和OSCC临床图像的自动分类,并探索了模型的可解释性 | 研究仅进行了内部测试,未进行外部验证 | 开发AI模型以辅助口腔潜在恶性病变和口腔鳞状细胞癌的诊断 | 口腔潜在恶性病变(OPMD)和口腔鳞状细胞癌(OSCC)的临床图像 | 计算机视觉 | 口腔癌 | 深度学习 | CNN(包括ConvNeXt和MobileNet) | 图像 | 778张临床图像 | NA | NA | NA | NA |
| 8864 | 2025-06-18 |
Deep learning can predict global earthquake-triggered landslides
2025-Jul, National science review
IF:16.3Q1
DOI:10.1093/nsr/nwaf179
PMID:40520459
|
research paper | 该研究开发了一个深度学习模型,用于预测全球范围内地震引发的滑坡概率 | 首次构建了包含过去50年38次最灾难性地震引发的约40万个滑坡的全球数据库,并开发了无需依赖当地先验知识的深度学习模型 | 模型虽然具有较高的空间准确性(约82%),但仍可能存在特定地区或地震类型下的预测偏差 | 提高地震触发滑坡的预测速度和准确性,以支持灾害快速响应和事前规划 | 全球范围内的地震触发滑坡 | machine learning | NA | 深度学习 | 深度学习模型 | 滑坡数据库 | 约40万个滑坡数据,涉及38次重大地震 | NA | NA | NA | NA |
| 8865 | 2025-06-18 |
Preoperative Identification of Papillary Thyroid Carcinoma Subtypes and Lymph Node Metastasis via Deep Learning-Assisted Surface-Enhanced Raman Spectroscopy
2025-Jun-17, ACS nano
IF:15.8Q1
DOI:10.1021/acsnano.5c05698
PMID:40464771
|
research paper | 开发了一种深度学习辅助的表面增强拉曼散射(SERS)芯片,用于术前诊断甲状腺乳头状癌(PTC)组织学亚型和评估淋巴结转移 | 结合深度学习和SERS技术,首次实现了对PTC亚型和淋巴结转移的高精度术前诊断 | 研究样本量未明确说明,可能影响结果的普遍性 | 提高甲状腺乳头状癌术前诊断的准确性,为个性化治疗提供依据 | 甲状腺乳头状癌(PTC)患者及其细针穿刺(FNA)样本 | digital pathology | thyroid cancer | surface-enhanced Raman spectroscopy (SERS), fine-needle aspiration (FNA) | CNN | Raman spectral data | NA | NA | NA | NA | NA |
| 8866 | 2025-06-18 |
Enhancing image quality in fast neutron-based range verification of proton therapy using a deep learning-based prior in LM-MAP-EM reconstruction
2025-Jun-17, Physics in medicine and biology
IF:3.3Q1
DOI:10.1088/1361-6560/ade198
PMID:40472868
|
研究论文 | 本研究探讨了在基于快中子(FN)的质子治疗范围验证中,使用卷积神经网络预测的先验信息进行列表模式(LM)最大后验(MAP)期望最大化(EM)图像重建的方法 | 采用条件生成对抗网络(pix2pix)从逐步增加噪声的数据中学习,模拟真实条件下的探测器分辨率效应,以提高图像重建质量 | 模型在高噪声场景下的鲁棒性有限,其有效性高度依赖于数据质量 | 提高质子治疗范围验证中基于快中子的图像重建质量 | 基于CT的肺癌患者模型中的85 MeV质子笔形束 | 数字病理 | 肺癌 | 蒙特卡洛模拟 | 条件生成对抗网络(pix2pix) | 图像 | NA | NA | NA | NA | NA |
| 8867 | 2025-06-18 |
Ultrasound for breast cancer detection: A bibliometric analysis of global trends between 2004 and 2024
2025-Jun-16, Medical ultrasonography
IF:1.8Q3
DOI:10.11152/mu-4443
PMID:39420819
|
研究论文 | 本文通过文献计量学方法对2004年至2024年间超声在乳腺癌诊断中的研究趋势进行了全面分析 | 首次对超声在乳腺癌诊断中的全球研究趋势进行了文献计量学分析和可视化 | 仅分析了2004年至2024年间的文献,可能未涵盖最新研究进展 | 深入了解超声在乳腺癌诊断中的研究现状和未来趋势 | 3523篇来自82个国家/地区2176个机构的文章 | 数字病理 | 乳腺癌 | 超声成像 | CNN, 深度学习 | 文献数据 | 3523篇文章 | NA | NA | NA | NA |
| 8868 | 2025-06-18 |
Fast and accurate lung cancer subtype classication and localization based on Intraoperative frozen sections of lung adenocarcinoma
2025-Jun-16, Biomedical physics & engineering express
IF:1.3Q3
DOI:10.1088/2057-1976/ade157
PMID:40472860
|
研究论文 | 本研究开发了一种基于深度神经网络的辅助诊断系统,用于手术冷冻切片的肺癌亚型分类和定位 | 结合多实例学习与EMA/SimAM/SE注意力增强的ResSimAM_Hybrid模型,实现了冷冻切片中肺癌亚型的高精度分类和定位 | 研究仅针对肺腺癌的冷冻切片,未涉及其他类型肺癌或其他诊断技术 | 开发AI辅助诊断系统以减少病理学家的工作量并提高诊断准确性 | 肺腺癌的手术冷冻切片 | 数字病理学 | 肺癌 | 深度学习 | ResSimAM_Hybrid, FSG-TL Model | 图像 | 未明确提及具体样本数量,但涉及40,000×60,000像素的全切片图像 | NA | NA | NA | NA |
| 8869 | 2025-06-18 |
Think deep in the tractography game: deep learning for tractography computing and analysis
2025-Jun-16, Brain structure & function
IF:2.7Q3
DOI:10.1007/s00429-025-02938-0
PMID:40522497
|
review | 本文综述了基于深度学习的纤维束成像计算与分析的最新进展和挑战 | 探讨深度学习在纤维束成像领域的潜在革命性影响 | 仅提供简要总结,未涉及具体实验或详细技术分析 | 探索深度学习在纤维束成像计算与分析中的应用 | 纤维束成像技术 | machine learning | NA | 深度学习 | NA | NA | NA | NA | NA | NA | NA |
| 8870 | 2025-06-18 |
A Semi-supervised Ultrasound Image Segmentation Network Integrating Enhanced Mask Learning and Dynamic Temperature-controlled Self-distillation
2025-Jun-16, IEEE journal of biomedical and health informatics
IF:6.7Q1
DOI:10.1109/JBHI.2025.3580275
PMID:40522800
|
research paper | 提出了一种结合增强掩模学习和动态温度控制自蒸馏的半监督超声图像分割网络EML-DMSD,以提高分割精度和推理效率 | 结合增强掩模学习(EML)和动态温度控制多尺度自蒸馏(DMSD),提高了模型对噪声和边界模糊的鲁棒性,同时提升了推理效率 | 需要进一步验证在更大规模数据集上的性能,以及在实际临床环境中的适用性 | 解决超声图像自动分割中的噪声、低对比度和边界模糊问题,提高分割精度和推理效率 | 超声图像 | computer vision | NA | 半监督学习,自蒸馏 | CNN | image | 多个超声基准数据集 | NA | NA | NA | NA |
| 8871 | 2025-06-18 |
IR Spectra for the EMIM-TFSI Ion Pair Using Deep Potentials
2025-Jun-16, Journal of chemical theory and computation
IF:5.7Q1
DOI:10.1021/acs.jctc.5c00187
PMID:40523144
|
研究论文 | 本研究采用深度势能(DP)和深度Wannier(DW)模型框架,研究[EMIM]-[TFSI]离子对的结构、偶极矩和红外光谱 | 利用DP和DW模型的高效计算能力,解决了传统方法在模拟离子液体红外光谱时的计算需求高的问题,并实现了与AIMD和实验数据的一致性 | 需要数十至数百皮秒的模拟时间以达到偶极矩分布的充分收敛,以减少特定离子构型带来的噪声或偏差 | 研究离子液体[EMIM]-[TFSI]的红外光谱特性,验证深度学习势能和偶极模型在带电物种和复杂离子相互作用系统中的适用性 | 1-乙基-3-甲基咪唑双(三氟甲基磺酰基)亚胺离子对([EMIM]-[TFSI]) | 计算化学 | NA | 深度势能(DP)、深度Wannier(DW)模型、分子动力学(AIMD) | DP、DW | 分子动力学模拟数据、红外光谱数据 | NA | NA | NA | NA | NA |
| 8872 | 2025-06-18 |
Early outcome-prediction with an automated EEG background trend in hypothermia-treated newborns with encephalopathy
2025-Jun-16, Pediatric research
IF:3.1Q1
DOI:10.1038/s41390-025-04193-9
PMID:40523949
|
research paper | 评估自动化EEG背景趋势(BSN)在低温治疗新生儿脑病中的早期预测准确性 | 首次在仅接受低温治疗的婴儿队列中应用BSN趋势,证明其在出生后12小时内即可预测长期结果 | 研究样本仅来自瑞典地区,可能限制结果的普遍性 | 评估BSN在低温治疗的中重度缺氧缺血性脑病(HIE)婴儿中的早期预测准确性 | 85名接受低温治疗的HIE婴儿 | digital pathology | hypoxic-ischemic encephalopathy | aEEG/EEG | deep learning | EEG信号 | 85名婴儿 | NA | NA | NA | NA |
| 8873 | 2025-06-18 |
Automated quantification of T1 and T2 relaxation times in liver mpMRI using deep learning: a sequence-adaptive approach
2025-Jun-14, European radiology experimental
IF:3.7Q1
DOI:10.1186/s41747-025-00596-9
PMID:40515936
|
研究论文 | 本文评估了一种基于深度学习的序列自适应肝脏多参数MRI(mpMRI)评估方法,并在不同人群中验证了其有效性 | 提出了一种无需额外序列特定训练即可评估其他参数序列的两步法(分割和共配准)深度学习算法 | NA | 评估深度学习在肝脏多参数MRI中自动量化T1和T2弛豫时间的有效性 | 肝脏多参数MRI图像 | 数字病理学 | 肝纤维化 | mpMRI | 神经网络 | 图像 | 200例肝脏mpMRI检查用于训练,120例用于内部测试,65例活检证实肝纤维化患者和25例健康志愿者用于外部测试 | NA | NA | NA | NA |
| 8874 | 2025-06-18 |
AI-driven techniques for detection and mitigation of SARS-CoV-2 spread: a review, taxonomy, and trends
2025-Jun-14, Clinical and experimental medicine
IF:3.2Q2
DOI:10.1007/s10238-025-01753-5
PMID:40515956
|
综述 | 本文系统回顾了联邦学习(FL)、深度学习(DL)、强化学习(RL)及混合方法在SARS-CoV-2诊断和治疗领域的应用 | 提出了基于AI技术的SARS-CoV-2传播检测与缓解方法的分类和趋势分析 | 面临数据异质性、训练数据不足、模型可解释性挑战、患者隐私保护及实施限制等问题 | 提高SARS-CoV-2诊断准确性和治疗有效性 | SARS-CoV-2 RNA病毒 | 机器学习 | COVID-19 | 联邦学习(FL)、深度学习(DL)、强化学习(RL) | NA | NA | NA | NA | NA | NA | NA |
| 8875 | 2025-06-18 |
FDTooth: Intraoral Photographs and CBCT Images for Fenestration and Dehiscence Detection
2025-Jun-14, Scientific data
IF:5.8Q1
DOI:10.1038/s41597-025-05348-3
PMID:40517159
|
research paper | 介绍了一个名为FDTooth的数据集,包含241名患者的口腔内照片和CBCT图像,用于检测牙槽骨开窗和开裂(FD) | 首次公开结合口腔内照片和CBCT图像的数据集,并开发了自动检测FD的基线模型 | 数据集仅包含241名患者,样本量相对较小 | 开发一种非侵入性、高效的早期FD筛查方法 | 241名年龄在9至55岁之间的患者 | digital pathology | dental disease | CBCT | baseline model | image | 241名患者,1800个精确标注的边界框 | NA | NA | NA | NA |
| 8876 | 2025-06-18 |
A multimodal fusion system predicting survival benefits of immune checkpoint inhibitors in unresectable hepatocellular carcinoma
2025-Jun-14, NPJ precision oncology
IF:6.8Q1
DOI:10.1038/s41698-025-00979-6
PMID:40517171
|
研究论文 | 开发了一种多模态融合系统,用于预测不可切除肝细胞癌患者对免疫检查点抑制剂的生存获益 | 结合CT衍生的深度学习特征和临床数据,构建的多模态融合系统在预测生存期方面优于现有方法,并具有临床解释性 | 研究基于回顾性多中心数据,需要前瞻性研究进一步验证 | 优化不可切除肝细胞癌患者对免疫检查点抑制剂的个性化治疗策略 | 不可切除肝细胞癌患者 | 数字病理学 | 肝细胞癌 | 深度学习 | Ensemble-DL | CT图像和临床数据 | 859例患者(回顾性多中心数据) | NA | NA | NA | NA |
| 8877 | 2025-06-18 |
An Efficient Deep Learning Framework for Revealing the Evolution of Characterization Methods in Nanoscience
2025-Jun-13, Nano-micro letters
IF:31.6Q1
DOI:10.1007/s40820-025-01807-z
PMID:40512318
|
研究论文 | 本文提出了一种结合引用分析和主题建模的方法,用于揭示科学历史中的隐藏发展模式,并在拉曼光谱领域构建知识图谱 | 该方法通过结合引用分析和主题建模,显著提高了主题一致性(最低增长率100%)和多样性(增长率0-126%),并设计了基于规则的标记器解决化学领域实体命名规则导致的标记问题 | NA | 揭示科学历史中的隐藏发展模式,构建特定领域的知识图谱 | 拉曼光谱领域的文献数据 | 自然语言处理 | NA | 文本挖掘、主题建模、引用分析 | Latent Dirichlet Allocation (LDA) | 文本 | NA | NA | NA | NA | NA |
| 8878 | 2025-10-06 |
Deployment of an Artificial Intelligence Histology Tool to Aid Qualitative Assessment of Histopathology Using the Nancy Histopathology Index in Ulcerative Colitis
2025-Jun-13, Inflammatory bowel diseases
IF:4.5Q1
DOI:10.1093/ibd/izae204
PMID:39284932
|
研究论文 | 开发并验证了一种基于深度学习的人工智能组织学工具,用于溃疡性结肠炎组织病理学的南希指数评估 | 改进了先前概念验证工具,采用4神经网络结构结合分类器模块,显著提升了南希指数预测准确率 | 研究样本量有限(791张图像),仅包含18岁及以上溃疡性结肠炎患者 | 开发用于溃疡性结肠炎组织病理学定量评估的人工智能工具 | 溃疡性结肠炎患者的组织病理学切片 | 数字病理学 | 溃疡性结肠炎 | 苏木精-伊红染色 | 深度学习,神经网络 | 病理图像 | 791张病理图像(630张训练,161张测试) | NA | 4神经网络结构+分类器模块 | 准确率,混淆矩阵分析,南希指标 | NA |
| 8879 | 2025-06-18 |
Stem loop binding protein promotes SARS-CoV-2 replication via -1 programmed ribosomal frameshifting
2025-Jun-13, Signal transduction and targeted therapy
IF:40.8Q1
DOI:10.1038/s41392-025-02277-w
PMID:40514371
|
研究论文 | 本文研究了宿主蛋白SLBP如何通过-1程序性核糖体移码促进SARS-CoV-2的复制 | 首次发现SLBP作为宿主蛋白通过-1 PRF促进SARS-CoV-2的复制,并利用深度学习工具PrismNet预测其与-1 PRF RNA的高结合概率 | 研究主要基于体外实验,尚未在体内模型中验证SLBP的作用 | 探索影响SARS-CoV-2中-1程序性核糖体移码的宿主因素 | SARS-CoV-2病毒及其-1 PRF RNA与宿主蛋白SLBP的相互作用 | 病毒学 | COVID-19 | RNA pull-down assays, 质谱分析, EMSAs, smFISH assays, 体外翻译系统 | PrismNet深度学习工具 | RNA序列数据 | NA | NA | NA | NA | NA |
| 8880 | 2025-06-18 |
A Large Crowdsourced Street View Dataset for Mapping Road Surface Types in Africa
2025-Jun-13, Scientific data
IF:5.8Q1
DOI:10.1038/s41597-025-05153-y
PMID:40514376
|
research paper | 该研究通过众包街景数据创建了一个大型数据集,用于非洲道路表面类型的分类 | 利用专家标注的众包街景数据集训练深度学习模型,显著提高了道路表面分类的准确性 | 数据标注依赖于专家投票机制,可能存在主观偏差 | 通过深度学习模型提高非洲道路表面类型的识别准确率 | 非洲的道路表面类型 | computer vision | NA | 深度学习 | Swin Transformer, CNN等 | image | 200,000张来自Mapillary众包街景数据集的图像 | NA | NA | NA | NA |