本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!
除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
8961 | 2025-01-28 |
Status and future trends in wastewater management strategies using artificial intelligence and machine learning techniques
2024-Aug, Chemosphere
IF:8.1Q1
|
综述 | 本文综述了利用人工智能和机器学习技术进行水和废水管理的最新趋势 | 结合AI、深度学习和物联网技术,提出了高效的水管理框架 | 未具体说明数据来源和样本量,案例研究和统计评估的细节不足 | 探讨智能水管理机制,以满足不同用途的水质要求 | 水和废水管理策略 | 机器学习 | NA | 人工智能(AI)、深度学习(DL)、物联网(IoT) | NA | 多种形式的数据 | NA |
8962 | 2025-01-28 |
MambaTab: A Plug-and-Play Model for Learning Tabular Data
2024-Aug, Proceedings. IEEE Conference on Multimedia Information Processing and Retrieval
DOI:10.1109/mipr62202.2024.00065
PMID:39850741
|
研究论文 | 本文介绍了一种基于结构化状态空间模型(SSM)的创新方法MambaTab,用于处理表格数据 | MambaTab利用新兴的SSM变体Mamba,为表格数据提供端到端的监督学习,相比现有方法在性能上更优且参数更少 | NA | 开发一种高效、可扩展且通用的表格数据处理模型 | 表格数据 | 机器学习 | NA | 结构化状态空间模型(SSM) | Mamba | 表格数据 | 多样化的基准数据集 |
8963 | 2025-01-28 |
Beyond Size and Class Balance: Alpha as a New Dataset Quality Metric for Deep Learning
2024-Jul-31, ArXiv
PMID:39830079
|
研究论文 | 本文提出了一种新的数据集质量度量指标——α,用于改进深度学习在医学影像中的性能 | 引入了生态学中的多样性度量框架,提出了一种新的数据集质量度量指标α,超越了传统的数据集大小和类别平衡的度量方法 | 研究仅限于医学影像数据集,未验证在其他类型数据集上的适用性 | 探索如何通过最大化数据集多样性来改进深度学习模型在图像分类任务中的性能 | 医学影像数据集 | 计算机视觉 | NA | NA | 深度学习模型 | 图像 | 七个医学数据集的数千个子集 |
8964 | 2025-01-28 |
The cytoarchitectonic landscape revealed by deep learning method facilitated precise positioning in mouse neocortex
2024-06-04, Cerebral cortex (New York, N.Y. : 1991)
DOI:10.1093/cercor/bhae229
PMID:38836835
|
研究论文 | 本文开发了一种细胞结构标志物识别流程,利用荧光显微光学断层扫描技术成像小鼠全脑,并通过快速3D卷积网络分割整个新皮层的神经元体,揭示了新皮层的细胞结构景观 | 开发了一种新的细胞结构标志物识别流程,结合荧光显微光学断层扫描和快速3D卷积网络,实现了新皮层神经元的三维分割和分析 | 研究主要集中在小鼠新皮层,未涉及其他物种或更广泛的脑区 | 提高对新皮层结构的理解,特别是皮层区域的精确定位 | 小鼠新皮层 | 计算机视觉 | NA | 荧光显微光学断层扫描 | 3D卷积网络 | 图像 | 小鼠全脑 |
8965 | 2025-01-28 |
Exploring intricate connectivity patterns for cognitive functioning and neurological disorders: incorporating frequency-domain NC method into fMRI analysis
2024-05-02, Cerebral cortex (New York, N.Y. : 1991)
DOI:10.1093/cercor/bhae195
PMID:38741270
|
研究论文 | 本研究将频域新因果方法应用于功能磁共振成像分析,以探索认知功能和神经系统疾病的复杂连接模式 | 将频域新因果方法引入功能磁共振成像分析,构建了多种因果关联模型,并利用深度学习模型分析脑区拓扑变化特征 | 研究主要基于模拟信号和特定患者群体,可能无法完全反映真实世界的复杂性 | 探索认知功能和神经系统疾病的复杂连接模式 | 1,252组不同认知障碍程度的个体 | 神经影像分析 | 阿尔茨海默病 | 功能磁共振成像(fMRI) | 深度学习模型 | 功能磁共振成像数据 | 1,252组个体 |
8966 | 2025-01-28 |
Pose analysis in free-swimming adult zebrafish, Danio rerio : "fishy" origins of movement design
2024-Jan-01, bioRxiv : the preprint server for biology
DOI:10.1101/2023.12.31.573780
PMID:38260397
|
研究论文 | 本文通过无标记跟踪和深度学习技术,研究了成年斑马鱼自由游泳时的典型姿势,并分析了其运动设计的进化意义 | 利用DeepLabCut和B-SOiD机器学习软件进行无标记跟踪和多变量时间序列分析,揭示了斑马鱼运动中的稳定目标姿势和过渡姿势 | 研究仅基于12只斑马鱼的数据,样本量较小,可能限制了结果的普适性 | 研究斑马鱼自由游泳时的姿势,以验证运动设计中最小化主动控制的假设 | 成年斑马鱼(Danio rerio) | 计算机视觉 | NA | DeepLabCut(深度学习姿势估计工具包),B-SOiD(无监督多变量时间序列分析软件) | 深度学习 | 视频 | 12只成年斑马鱼,14,000帧连续视频 |
8967 | 2025-01-28 |
Multi-task deep learning-based survival analysis on the prognosis of late AMD using the longitudinal data in AREDS
2021, AMIA ... Annual Symposium proceedings. AMIA Symposium
PMID:35308963
|
研究论文 | 本研究利用AREDS的纵向数据和深度学习技术,预测晚期年龄相关性黄斑变性(AMD)的发展 | 结合历史数据和深度学习技术,提高了预测晚期AMD的准确性,并证明深度学习提取的图像特征比临床医生提取的特征更具信息性 | 仅使用当前访问的数据时,复杂特征的预测效果不如结合纵向数据 | 预测晚期AMD的发展 | 年龄相关性黄斑变性(AMD)患者 | 数字病理学 | 年龄相关性黄斑变性 | 深度学习 | 卷积神经网络(CNN) | 图像 | AREDS研究中的纵向数据 |
8968 | 2025-01-27 |
Regional PM2.5 prediction with hybrid directed graph neural networks and Spatio-temporal fusion of meteorological factors
2025-Feb-01, Environmental pollution (Barking, Essex : 1987)
DOI:10.1016/j.envpol.2024.125404
PMID:39613176
|
研究论文 | 本文提出了一种基于深度学习的混合有向图神经网络方法,用于预测区域PM2.5浓度,并考虑了相邻城市之间的区域传输相互作用 | 结合图神经网络(GNN)和长短期记忆网络(LSTM)进行时空编码,显著提高了PM浓度预测的准确性,并在华北平原的48小时预测中表现出色 | 模型主要应用于华北平原,可能在其他地区的适用性需要进一步验证 | 优化空气质量预测和管理 | 区域PM2.5浓度 | 机器学习 | NA | 深度学习 | 混合有向图神经网络(GNN + LSTM) | 时空数据 | NA |
8969 | 2025-01-27 |
Predictive analysis of COVID-19 occurrence and vaccination impacts across the 50 US states
2025-Feb, Computers in biology and medicine
IF:7.0Q1
DOI:10.1016/j.compbiomed.2024.109493
PMID:39626459
|
研究论文 | 本研究旨在通过机器学习模型评估疫苗接种在COVID-19确诊病例和死亡病例中的有效性,并使用外部验证确保对接种人群的最佳保护 | 开发了一个深度学习LSTM模型,用于分析疫苗接种在预测COVID-19病例和死亡中的有效性,并通过内部和外部验证评估模型性能 | 研究仅基于美国CDC的数据,可能无法完全适用于其他国家的疫情情况 | 评估COVID-19疫苗接种在减少确诊病例和死亡病例中的有效性 | 美国50个州的COVID-19确诊病例和死亡病例 | 机器学习 | COVID-19 | 深度学习 | LSTM | 时间序列数据 | 2021年至2023年美国CDC收集的数据 |
8970 | 2025-01-27 |
Interpretable prediction of drug-drug interactions via text embedding in biomedical literature
2025-Feb, Computers in biology and medicine
IF:7.0Q1
DOI:10.1016/j.compbiomed.2024.109496
PMID:39626457
|
研究论文 | 本研究提出了一种基于层次注意力机制的深度学习模型,通过生物医学文献预测药物-药物相互作用(DDIs)及其类型 | 使用预训练的生物医学语言模型和双向长短期记忆网络结合层次注意力机制,有效捕捉药物特性并预测DDIs,同时通过注意力机制解释预测结果 | 未提及模型在更大规模数据集上的泛化能力或实际临床应用中的验证 | 预测药物-药物相互作用及其类型,以确保安全用药 | 药物-药物相互作用(DDIs) | 自然语言处理 | NA | 深度学习 | 双向长短期记忆网络(BiLSTM)与层次注意力网络 | 文本 | 164种DDI类型 |
8971 | 2025-01-27 |
A review of convolutional neural network based methods for medical image classification
2025-Feb, Computers in biology and medicine
IF:7.0Q1
DOI:10.1016/j.compbiomed.2024.109507
PMID:39631108
|
综述 | 本文系统回顾了基于卷积神经网络(CNN)的医学图像分类方法,并分析了这些方法的发展、主要技术及其在提高分类准确性和效率方面的作用 | 对149篇最新和最重要的论文进行了深入分析,系统总结了CNN在医学图像分类中的应用及其面临的挑战,并指出了未来的研究方向 | 尽管CNN在医学图像分类任务中表现出色,但其在临床应用中仍面临困难 | 探讨CNN在医学图像分类中的应用及其未来研究方向 | 医学图像分类方法 | 计算机视觉 | NA | CNN | CNN | 图像 | 149篇论文 |
8972 | 2025-01-27 |
A smart CardioSenseNet framework with advanced data processing models for precise heart disease detection
2025-Feb, Computers in biology and medicine
IF:7.0Q1
DOI:10.1016/j.compbiomed.2024.109473
PMID:39631110
|
研究论文 | 本文提出了一种名为CardioSenseNet的智能框架,用于精确检测心脏病,该框架通过先进的数据处理模型提高了检测的准确性和效率 | 引入了新的数据预处理方法DGPN、特征选择方法STHIO和预测模型SADNet,这些方法在特征表示、特征选择和预测准确性方面具有创新性 | 未提及具体的数据集限制或模型在实际应用中的潜在问题 | 提高心脏病检测的准确性和效率,以支持心血管健康管理 | 心脏病患者的数据 | 机器学习 | 心血管疾病 | 深度学习 | SADNet | 结构化数据 | 使用了Cleveland和CVD等基准数据集 |
8973 | 2025-01-27 |
Leveraging deep transfer learning and explainable AI for accurate COVID-19 diagnosis: Insights from a multi-national chest CT scan study
2025-Feb, Computers in biology and medicine
IF:7.0Q1
DOI:10.1016/j.compbiomed.2024.109461
PMID:39631112
|
研究论文 | 本文提出了一种基于深度迁移学习和可解释AI的自动化计算机辅助诊断框架XCT-COVID,用于从胸部CT扫描图像中准确预测COVID-19感染 | 首次在一个统一框架内开发了三种不同的模型,利用了之前未探索的大数据集和两个广泛使用的小数据集,并通过可解释AI分析模型功能 | 在图像质量较低的小数据集上性能显著下降 | 提高COVID-19诊断的准确性和可解释性 | 胸部CT扫描图像 | 计算机视觉 | COVID-19 | 深度迁移学习 | CNN(VGG16) | 图像 | 大数据集和两个小数据集 |
8974 | 2025-01-27 |
Advancing cancer diagnosis and prognostication through deep learning mastery in breast, colon, and lung histopathology with ResoMergeNet
2025-Feb, Computers in biology and medicine
IF:7.0Q1
DOI:10.1016/j.compbiomed.2024.109494
PMID:39637456
|
研究论文 | 本文介绍了一种名为ResoMergeNet的深度学习模型,用于乳腺癌、结肠癌和肺癌的组织病理学图像的多类和二分类癌症分类 | ResoMergeNet集成了Resboost机制和ConvmergeNet机制,增强了特征表示和提取,提高了诊断准确性 | 模型在泛化到不同临床环境时可能仍面临挑战 | 提高癌症诊断和预后的准确性,减少诊断错误和人为偏见 | 乳腺癌、结肠癌和肺癌的组织病理学图像 | 数字病理学 | 乳腺癌、结肠癌、肺癌 | 深度学习 | ResoMergeNet | 图像 | LC-25000和BreakHis数据集 |
8975 | 2025-01-27 |
Progress on the development of prediction tools for detecting disease causing mutations in proteins
2025-Feb, Computers in biology and medicine
IF:7.0Q1
DOI:10.1016/j.compbiomed.2024.109510
PMID:39637461
|
综述 | 本文综述了用于识别蛋白质中致病突变的预测方法的发展,包括现有数据库、基于序列和结构的特征,以及基于机器学习、深度学习和大型语言模型的计算工具 | 强调了在预测癌症、神经退行性疾病、传染病以及膜蛋白相关突变热点方面的进展,并讨论了现有方法的局限性和可能的改进 | 现有方法存在局限性,需要进一步改进以提高预测准确性 | 开发预测工具以识别蛋白质中的致病突变,从而深入理解疾病的分子机制并制定治疗策略 | 蛋白质中的氨基酸残基突变 | 生物信息学 | 癌症、神经退行性疾病、传染病 | 机器学习、深度学习、大型语言模型 | NA | 序列数据、结构数据 | NA |
8976 | 2025-01-27 |
Predicting cancer content in tiles of lung squamous cell carcinoma tumours with validation against pathologist labels
2025-Feb, Computers in biology and medicine
IF:7.0Q1
DOI:10.1016/j.compbiomed.2024.109489
PMID:39637460
|
研究论文 | 本文提出了一种模型,用于从肺鳞状细胞癌(SqCC)肿瘤的数字化全切片图像(WSIs)中排除非癌组织,以提高模型训练的准确性 | 提出了一种能够预测肺鳞状细胞癌肿瘤切片中癌症含量的模型,并通过病理学家标签进行验证 | 模型在癌症阈值50%时的AUC为0.83,假阳性主要出现在癌症周围组织、癌症含量低于50%的切片以及免疫活性高的区域,假阴性主要出现在显微切割缺陷区域 | 开发一种模型,用于从肺鳞状细胞癌的WSIs中排除非癌组织,以提高治疗生物标志物预测的研究效率 | 肺鳞状细胞癌(SqCC)肿瘤的数字化全切片图像(WSIs) | 数字病理学 | 肺癌 | 深度学习 | VGG16 | 图像 | 来自35个不同中心的116个肿瘤WSIs |
8977 | 2025-01-27 |
Challenges and solutions of deep learning-based automated liver segmentation: A systematic review
2025-Feb, Computers in biology and medicine
IF:7.0Q1
DOI:10.1016/j.compbiomed.2024.109459
PMID:39642700
|
系统综述 | 本文系统回顾了基于深度学习的自动化肝脏分割面临的挑战及其解决方案 | 对2016年至2022年间发表的88篇相关文献进行了全面分析,将肝脏分割挑战分为五大类,并详细探讨了每类挑战的解决方案 | 研究仅限于Scopus和ScienceDirect数据库中的文献,可能未涵盖所有相关研究 | 分析肝脏分割在先前研究中的挑战,并识别研究者为应对这些挑战对网络模型所做的修改及其他增强措施 | 医学图像中的肝脏分割 | 数字病理学 | 肝脏疾病 | 深度学习 | NA | 医学图像 | 88篇文献 |
8978 | 2025-01-27 |
Protein-protein interaction detection using deep learning: A survey, comparative analysis, and experimental evaluation
2025-Feb, Computers in biology and medicine
IF:7.0Q1
DOI:10.1016/j.compbiomed.2024.109449
PMID:39644584
|
综述 | 本文对用于检测蛋白质-蛋白质相互作用(PPIs)的各种深度学习(DL)技术和算法进行了全面分析,并提供了详细的实证和实验评估 | 本文通过实证和实验评估,比较了不同深度学习技术在PPI检测中的表现,并提出了未来改进方向 | 深度神经网络(DNNs)存在过拟合和低可解释性的问题,长短期记忆网络(LSTMs)在可扩展性方面存在挑战 | 评估和比较深度学习技术在蛋白质-蛋白质相互作用检测中的性能 | 蛋白质-蛋白质相互作用(PPIs) | 机器学习 | NA | 深度学习(DL) | DNNs, CNNs, GSNs, LSTMs | 生物序列数据 | NA |
8979 | 2025-01-27 |
Interpretable deep learning architecture for gastrointestinal disease detection: A Tri-stage approach with PCA and XAI
2025-Feb, Computers in biology and medicine
IF:7.0Q1
DOI:10.1016/j.compbiomed.2024.109503
PMID:39647242
|
研究论文 | 本研究提出了一种用于胃肠道疾病检测的可解释深度学习架构,采用三阶段方法结合PCA和XAI技术 | 提出了一种轻量级的三阶段架构,结合了PSE-CNN、PCA和DELM,并在最大的胃肠道疾病数据集GastroVision上进行了验证,同时使用了多种XAI方法提高模型的可解释性 | 未提及具体局限性 | 开发一种能够自动分类胃肠道疾病的计算机辅助诊断系统 | 胃肠道疾病 | 数字病理学 | 胃肠道疾病 | 深度学习 | PSE-CNN, PCA, DELM | 图像 | 8000张图像,涵盖27种胃肠道疾病 |
8980 | 2025-01-27 |
Domain generalization for mammographic image analysis with contrastive learning
2025-Feb, Computers in biology and medicine
IF:7.0Q1
DOI:10.1016/j.compbiomed.2024.109455
PMID:39657447
|
研究论文 | 本文提出了一种新的对比学习方法MSVCL+,用于提高深度学习模型在乳腺图像分析中的风格泛化能力 | 开发了多风格和多视角的无监督自学习方案MSVCL+,以增强深度学习模型对风格多样性的鲁棒性 | 需要进一步验证在更多不同风格的数据集上的泛化能力 | 提高乳腺图像分析任务的域泛化能力 | 乳腺图像 | 计算机视觉 | 乳腺癌 | 对比学习 | 深度学习模型 | 图像 | 多个供应商风格域和多个公共数据集的乳腺图像 |