本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新(使用关键词“['deep learning']
”过滤),已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!
除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价19.9元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 | 算法框架 | 模型架构 | 性能指标 | 计算资源 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
9021 | 2025-06-06 |
NABP-LSTM-Att: Nanobody-Antigen binding prediction using bidirectional LSTM and soft attention mechanism
2025-Oct, Computational biology and chemistry
IF:2.6Q2
|
研究论文 | 该研究提出了一种名为NABP-LSTM-Att的深度学习模型,用于仅从序列信息预测纳米抗体与抗原的结合 | 使用双向LSTM和软注意力机制,仅依赖序列信息预测纳米抗体与抗原的结合,无需3D结构 | 模型的性能依赖于SAbDab-nano数据库中的序列数据,可能无法泛化到所有未知的纳米抗体-抗原对 | 提高纳米抗体与抗原结合亲和力和特异性的预测能力,以促进纳米抗体药物的开发 | 纳米抗体和抗原的序列 | 自然语言处理 | NA | 深度学习 | biLSTM和软注意力机制 | 序列数据 | 来自SAbDab-nano数据库的纳米抗体-抗原序列对 | NA | NA | NA | NA |
9022 | 2025-06-06 |
Towards automated and reliable lung cancer detection in histopathological images using DY-FSPAN: A feature-summarized pyramidal attention network for explainable AI
2025-Oct, Computational biology and chemistry
IF:2.6Q2
|
research paper | 本研究提出了一种名为DY-FSPAN的深度学习框架,用于在组织病理学图像中实现自动化和可靠的肺癌检测 | 结合Y-blocks和注意力机制增强空间特征表示,同时保持感受野一致性,提高了分类准确性和可解释性 | 未提及具体的数据集限制或临床应用中的潜在问题 | 开发一个平衡性能和可解释性的医学图像分类模型,以提高肺癌诊断的准确性 | 肺癌组织病理学图像 | digital pathology | lung cancer | deep learning | DY-FSPAN (Dilated Y-Block-based Feature Summarized Pyramidal Attention Network) | image | NA | NA | NA | NA | NA |
9023 | 2025-06-06 |
End-to-End Deep Learning-Based Motion Correction and Reconstruction for Accelerated Whole-Heart Joint T1/T2 Mapping
2025-Sep, Magnetic resonance imaging
IF:2.1Q2
DOI:10.1016/j.mri.2025.110396
PMID:40268172
|
研究论文 | 提出一种端到端深度学习算法,用于加速3D全心联合T1/T2映射,通过联合运动估计和基于模型的运动校正重建多对比度欠采样数据 | 采用端到端非刚性运动校正重建网络,显著减少重建时间(从2.5小时缩短至24秒),同时保持T1和T2值的良好一致性 | 未提及具体样本量或临床验证范围 | 加速全心心肌组织表征的3D联合T1/T2映射 | 多对比度欠采样MRI数据 | 医学影像分析 | 心血管疾病 | 深度学习算法、MRI多对比度成像 | 端到端非刚性运动校正重建网络 | 3D MRI影像 | NA | NA | NA | NA | NA |
9024 | 2025-06-06 |
Self-supervised learning for MRI reconstruction through mapping resampled k-space data to resampled k-space data
2025-Sep, Magnetic resonance imaging
IF:2.1Q2
DOI:10.1016/j.mri.2025.110404
PMID:40324545
|
研究论文 | 本文提出了一种自监督深度学习方法RSSDU,用于从欠采样的MRI数据中高效准确地重建图像,无需完全采样数据集作为参考 | 提出了一种新的自监督学习方法RSSDU,通过两次重采样k空间数据并训练网络从一个子集映射到另一个子集,无需完全采样数据 | 未提及具体在哪些临床场景下该方法可能表现不佳 | 开发一种无需完全采样数据的MRI图像重建方法 | 欠采样的MRI数据 | 医学影像处理 | NA | 深度学习 | DL | MRI k空间数据 | 未提及具体样本量 | NA | NA | NA | NA |
9025 | 2025-06-06 |
Accelerating prostate rs-EPI DWI with deep learning: Halving scan time, enhancing image quality, and validating in vivo
2025-Sep, Magnetic resonance imaging
IF:2.1Q2
DOI:10.1016/j.mri.2025.110418
PMID:40368253
|
研究论文 | 本研究评估了基于深度学习的超分辨率技术在减少前列腺扩散加权成像(DWI)扫描时间的同时保持图像质量的可行性和有效性 | 使用多尺度自相似网络(MSSNet)进行图像重建,显著减少扫描时间并提升图像质量 | 研究未提及对大规模临床数据集的验证,可能影响结果的普适性 | 评估深度学习超分辨率技术在前列腺DWI中的应用效果 | 前列腺扩散加权成像(DWI)数据 | 数字病理 | 前列腺癌 | readout-segmented echo-planar imaging (rs-EPI) | MSSNet | 医学影像 | 未明确提及样本数量 | NA | NA | NA | NA |
9026 | 2025-06-06 |
A Multihead Attention Deep Learning Algorithm to Detect Amblyopia Using Fixation Eye Movements
2025 Sep-Oct, Ophthalmology science
IF:3.2Q1
DOI:10.1016/j.xops.2025.100775
PMID:40458668
|
研究论文 | 开发了一种基于多注意力头的深度学习模型,通过简单的视觉注视任务中的眼动数据来检测不同类型和严重程度的弱视患者 | 使用多注意力头的transformer编码器模型,首次利用眼动数据进行弱视的客观分类 | 样本量相对较小(135名受试者),且仅在单一医疗中心进行 | 开发客观检测弱视的深度学习模型 | 40名对照组和95名弱视患者(包括不同类型和严重程度) | 计算机视觉 | 弱视 | 红外视频眼动追踪技术 | 多注意力头transformer编码器 | 眼动位置数据 | 135名受试者(40名对照,95名弱视患者) | NA | NA | NA | NA |
9027 | 2025-06-06 |
The environmental risk of heterogeneous oxidation is unneglectable: Time-resolved assessments beyond typical intermediate investigation
2025-Aug-01, Water research
IF:11.4Q1
DOI:10.1016/j.watres.2025.123572
PMID:40184704
|
research paper | 该研究提出了一种环境风险评估方法,用于区分高级氧化过程中不同解毒效果的氧化路径,并选择最适合的处理系统 | 通过深度学习回归建模和密度泛函理论,提高了有毒分子结构转变的推导速度,并建立了基于风险商数和聚类分析的定量评估系统 | 研究主要关注高级氧化过程中的环境风险,可能未涵盖所有类型的污染物或氧化过程 | 提高高级氧化过程中污染物解毒效果评估的准确性和安全性 | 高级氧化过程中的污染物及其副产物 | 环境科学 | NA | 密度泛函理论,深度学习回归建模 | deep neural network | 化学数据 | NA | NA | NA | NA | NA |
9028 | 2025-06-06 |
Deep Ensemble for Central Serous Microscopic Retinopathy Detection in Retinal Optical Coherence Tomographic Images
2025-Jul, Microscopy research and technique
IF:2.0Q3
DOI:10.1002/jemt.24836
PMID:40014549
|
research paper | 该研究提出了一种基于卷积神经网络的框架,结合分割和后处理技术,用于视网膜光学相干断层扫描图像中的中央浆液性视网膜病变检测 | 采用三种网络(ResNet-18、GoogleNet和VGG-19)的融合方法进行图像分类,实现了高准确率(99.6%)和高特异性(100%) | 研究仅使用了公开数据集OCTID,样本量相对较小(207张正常图像和102张CSR图像) | 开发一种自动检测中央浆液性视网膜病变的方法,以减少视力丧失的风险 | 视网膜光学相干断层扫描图像 | digital pathology | retinal disorder | 光学相干断层扫描(OCT) | CNN(ResNet-18、GoogleNet、VGG-19) | image | 309张图像(207张正常,102张CSR) | NA | NA | NA | NA |
9029 | 2025-06-06 |
Estimating canopy leaf angle from leaf to ecosystem scale: a novel deep learning approach using unmanned aerial vehicle imagery
2025-Jul, The New phytologist
DOI:10.1111/nph.70197
PMID:40346911
|
研究论文 | 提出一种基于无人机影像和深度学习的创新方法,用于从叶片到生态系统尺度高效估算冠层叶片角度 | 相比传统方法,该方法更经济、高效、自动化且劳动强度低,能够跨尺度估算叶片角度分布 | 目前仅在三种植物物种上进行了单叶尺度的验证,需要更多物种和生态系统验证其普适性 | 开发高效估算植被冠层叶片角度分布的方法,以支持生态系统建模 | 植物冠层叶片角度 | 计算机视觉 | NA | 无人机影像、运动结构点云算法 | Mask R-CNN | 图像 | 57,032片叶片(来自30m×30m样地内的四种代表性树种) | NA | NA | NA | NA |
9030 | 2025-06-06 |
Clinical validation of a deep learning model for low-count PET image enhancement
2025-Jun-05, European journal of nuclear medicine and molecular imaging
IF:8.6Q1
DOI:10.1007/s00259-025-07370-4
PMID:40471320
|
研究论文 | 本研究验证了深度学习模型RaDynPET在低计数PET图像增强中的效果 | RaDynPET模型能够在标准采集时间的25%内恢复高质量的PET图像,同时保持SUV值的一致性 | 研究样本量相对较小(120例患者),且仅针对18F-FDG PET/CT检查 | 评估深度学习模型在低计数PET图像增强中的应用效果 | 120例接受18F-FDG PET/CT检查的患者 | 数字病理 | NA | PET/CT | 深度学习模型RaDynPET | PET图像 | 120例患者(84例内部队列和36例外部队列) | NA | NA | NA | NA |
9031 | 2025-06-06 |
Development of a deep learning model for measuring sagittal parameters on cervical spine X-ray
2025-Jun-05, European spine journal : official publication of the European Spine Society, the European Spinal Deformity Society, and the European Section of the Cervical Spine Research Society
IF:2.6Q1
DOI:10.1007/s00586-025-08946-2
PMID:40471336
|
研究论文 | 开发了一种深度学习模型,用于自动测量颈椎X射线图像上的矢状面参数 | 使用CNN模型自动识别颈椎X射线图像上的关键点并测量相关参数,提高了诊断效率 | 研究仅基于700张X射线图像,样本量可能不足 | 开发一种自动测量颈椎矢状面参数的深度学习模型 | 颈椎X射线图像 | 计算机视觉 | 颈椎疾病 | X射线成像 | CNN | 图像 | 700张颈椎X射线图像(500张训练集,100张内部测试集,100张外部测试集) | NA | NA | NA | NA |
9032 | 2025-06-06 |
MSFHNet: a hybrid deep learning network for multi-scale spatiotemporal feature extraction of spatial cognitive EEG signals in BCI-VR systems
2025-Jun-05, Medical & biological engineering & computing
IF:2.6Q3
DOI:10.1007/s11517-025-03386-y
PMID:40471491
|
research paper | 提出了一种名为MSFHNet的混合深度学习网络,用于在BCI-VR系统中提取空间认知EEG信号的多尺度时空特征 | MSFHNet采用分层架构,时间模块使用多尺度扩张卷积捕捉动态EEG变化,空间模块集成通道-空间注意力机制建模通道间依赖和空间分布,通过跨堆叠模块进行深层融合优化特征提取 | NA | 提升BCI-VR系统中空间认知训练和评估的EEG信号表征能力 | 空间认知EEG信号 | 脑机接口 | NA | EEG信号分析 | MSFHNet(混合神经网络) | EEG信号 | NA | NA | NA | NA | NA |
9033 | 2025-06-06 |
Physics-Assisted Machine Learning for the Simulation of the Slurry Drying in the Manufacturing Process of Battery Electrodes: A Hybrid Time-Dependent VGG16-DEM Model
2025-Jun-04, ACS applied materials & interfaces
IF:8.3Q1
DOI:10.1021/acsami.4c23103
PMID:40327815
|
研究论文 | 本研究提出了一种结合深度学习与离散元方法的混合物理辅助机器学习模型,用于模拟锂离子电池电极制造过程中的浆料干燥过程 | 提出了一种混合物理辅助机器学习模型,结合了深度学习与离散元方法,显著提高了模拟效率并保持了物理合理性 | 模型训练基于特定配方(96%活性材料和4%碳粘合剂),虽然展示了良好的泛化能力,但未测试更广泛配方范围的适用性 | 提高锂离子电池电极制造过程中浆料干燥模拟的效率和准确性 | 锂离子电池电极制造过程中的浆料干燥过程 | 机器学习 | NA | 深度学习(DL)、离散元方法(DEM) | VGG16-DEM混合模型 | 模拟数据 | NA | NA | NA | NA | NA |
9034 | 2025-06-06 |
Advances in Machine Learning-Driven Flexible Strain Sensors: Challenges, Innovations, and Applications
2025-Jun-04, ACS applied materials & interfaces
IF:8.3Q1
DOI:10.1021/acsami.5c06453
PMID:40418062
|
综述 | 本文系统评估了柔性应变传感器的最新进展,重点探讨了机器学习在提升传感器性能中的关键作用 | 强调了机器学习特别是深度学习在提升柔性应变传感器稳定性、灵敏度和适应性方面的创新应用 | 传感器材料优化面临挑战,机器学习算法存在局限性、复杂环境下的噪声容忍度低以及模型可解释性有限 | 探讨机器学习驱动的柔性应变传感器的创新、挑战及应用 | 柔性应变传感器及其在健康监测、人机交互和智能家居中的应用 | 机器学习 | NA | 机器学习和深度学习 | 传统机器学习方法和深度学习 | 传感器数据 | NA | NA | NA | NA | NA |
9035 | 2025-06-06 |
GONet: A Generalizable Deep Learning Model for Glaucoma Detection
2025-Jun-04, IEEE transactions on bio-medical engineering
DOI:10.1109/TBME.2025.3576688
PMID:40465450
|
research paper | 介绍了一种名为GONet的深度学习模型,用于从彩色眼底照片中检测青光眼性视神经病变 | GONet采用DINOv2预训练的自监督视觉变换器,并通过多源域策略进行微调,展现出较高的跨分布泛化能力 | 模型在不同种族、疾病群体和检查环境中的泛化能力仍有待进一步验证 | 开发一种能够自动检测青光眼性视神经病变的深度学习模型 | 青光眼性视神经病变患者 | digital pathology | glaucoma | deep learning | vision transformers | image | 超过119,000张彩色眼底照片,以及一个新的包含747张标记CFPs的数据集 | NA | NA | NA | NA |
9036 | 2025-06-06 |
Early diagnosis model of mycosis fungoides and five inflammatory skin diseases based on multi-modal data-based convolutional neural network
2025-Jun-04, The British journal of dermatology
DOI:10.1093/bjd/ljaf212
PMID:40465821
|
research paper | 开发了一种基于多模态数据和卷积神经网络的AI模型,用于早期诊断蕈样肉芽肿和五种炎症性皮肤病 | 首次提出基于多模态信息(临床信息、临床图像和皮肤镜图像)的卷积神经网络模型,用于早期诊断蕈样肉芽肿和炎症性皮肤病 | 单中心回顾性研究,样本来源有限 | 构建AI辅助的早期诊断模型,提高蕈样肉芽肿和炎症性皮肤病的诊断准确性 | 蕈样肉芽肿(MF)和五种炎症性皮肤病患者 | digital pathology | cutaneous T-cell lymphoma | deep learning | CNN (RegNetY-400MF) | multimodal data (clinical information, clinical images, dermoscopic images) | 1157例患者(2452张临床图像和6550张皮肤镜图像) | NA | NA | NA | NA |
9037 | 2025-06-06 |
Development and validation of a deep learning-powered system for multi-version global alignment and proportion score to predict mechanical complications after adult degenerative scoliosis surgery
2025-Jun-04, European spine journal : official publication of the European Spine Society, the European Spinal Deformity Society, and the European Section of the Cervical Spine Research Society
IF:2.6Q1
DOI:10.1007/s00586-025-08995-7
PMID:40468028
|
NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
9038 | 2025-06-06 |
Real-time multiple people gait recognition in the edge
2025-Jun-02, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-025-02351-x
PMID:40456749
|
research paper | 该研究探讨了在边缘设备上部署步态识别模型,以实现实时多目标处理,同时优化延迟和能耗 | 将步态识别模型部署问题视为多目标选择问题,同时优化延迟、能耗和准确性,并利用批处理和并发执行提高吞吐量 | 研究仅在NVIDIA Jetson Orin Nano和Jetson AGX Orin设备上进行实验,可能不适用于其他硬件平台 | 优化边缘设备上的步态识别模型,实现实时多目标处理 | 步态识别模型在边缘设备上的部署与优化 | computer vision | NA | deep learning | CNN | video | 42至188个同时处理的目标 | NA | NA | NA | NA |
9039 | 2025-06-06 |
Single-molecule direct RNA sequencing reveals the shaping of epitranscriptome across multiple species
2025-Jun-02, Nature communications
IF:14.7Q1
DOI:10.1038/s41467-025-60447-4
PMID:40456740
|
研究论文 | 本研究开发了一种名为SingleMod的深度学习模型,用于从直接RNA测序数据中精确检测单个RNA分子上的m6A修饰 | 创新性地采用了多实例回归框架,利用定量NGS方法提供的广泛甲基化率标签,实现了对单个RNA分子m6A修饰的高精度预测 | NA | 全面表征m6A在转录组范围内的分布格局和生物发生机制 | 人类细胞系和八个不同物种的RNA分子 | 生物信息学 | NA | 直接RNA测序(DRS), 下一代测序(NGS) | 深度学习模型(SingleMod), 多实例回归(MIR) | RNA测序数据 | 人类细胞系和八个不同物种的RNA分子 | NA | NA | NA | NA |
9040 | 2025-06-06 |
A deep learning and IoT-driven framework for real-time adaptive resource allocation and grid optimization in smart energy systems
2025-Jun-02, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-025-02649-w
PMID:40456783
|
研究论文 | 提出了一种结合深度学习和物联网的智能能源系统实时自适应资源分配与电网优化框架 | 开发了ORA-DL框架,整合深度学习、物联网传感和实时自适应控制,显著提升电网能源管理效率 | 未提及框架在极端电网条件下的表现或潜在网络安全风险 | 优化智能电网能源管理,提高资源分配效率和电网稳定性 | 智能电网系统 | 机器学习 | NA | 深度学习、强化学习、多智能体决策 | 深度神经网络、强化学习 | 历史和实时能源数据 | 实验验证数据(具体样本量未明确说明) | NA | NA | NA | NA |