深度学习在生物医药领域的应用

本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新(使用关键词“['deep learning']”过滤),已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!

如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!

Sample Image
添加微信请说明来意
Sample Image
微信赞赏

除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价19.9元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。

当前筛选条件: [分区不过滤] [IF不过滤] [发表日期不过滤] [清除筛选条件]
当前共找到 32372 篇文献,本页显示第 9121 - 9140 篇。
序号 推送日期 文章 类型 简述 创新点 不足 研究目的 研究对象 领域 病种 技术 模型 数据类型 样本量 算法框架 模型架构 性能指标 计算资源
9121 2025-06-05
Interactively Fusing Global and Local Features for Benign and Malignant Classification of Breast Ultrasound Images
2025-03, Ultrasound in medicine & biology
research paper 本研究提出了一种名为CTMF-Net的深度学习方法,通过交互融合CNN和ViT的中间特征,实现了乳腺超声图像良恶性分类的高准确率 提出了CNN和Transformer多阶段融合网络(CTMF-Net),通过特征交互模块实现两种网络结构的中间特征交互与更新 未提及具体的数据集样本量差异对模型性能的影响,也未讨论模型在不同设备采集图像上的泛化能力 开发能够交互融合全局和局部特征的深度学习方法,提高乳腺超声图像分类准确率 乳腺超声图像中的良性和恶性肿瘤 digital pathology breast cancer deep learning CNN and ViT hybrid model (CTMF-Net) image 三个公开乳腺超声数据集(SYSU、UDIAT和BUSI) NA NA NA NA
9122 2025-06-05
MRI-derived radiomics and end-to-end deep learning models for predicting glioma ATRX status: a systematic review and meta-analysis of diagnostic test accuracy studies
2025-Mar, Clinical imaging IF:1.8Q3
系统综述与荟萃分析 本文系统综述和荟萃分析了MRI衍生的放射组学和端到端深度学习模型在预测神经胶质瘤ATRX状态中的诊断准确性 首次通过系统综述和荟萃分析评估了放射组学和端到端深度学习模型在预测神经胶质瘤ATRX状态中的综合表现 纳入研究的异质性较高,可能影响结果的稳定性 评估MRI衍生的放射组学和深度学习模型预测神经胶质瘤ATRX状态的诊断准确性 神经胶质瘤患者的MRI影像数据 数字病理学 神经胶质瘤 MRI 端到端深度学习模型 影像 17项研究纳入系统综述,11项研究纳入荟萃分析 NA NA NA NA
9123 2025-06-05
Predicting lymph node metastasis in thyroid cancer: systematic review and meta-analysis on the CT/MRI-based radiomics and deep learning models
2025-Mar, Clinical imaging IF:1.8Q3
meta-analysis 该论文通过系统综述和荟萃分析评估了基于CT/MRI的放射组学和深度学习模型在预测甲状腺癌淋巴结转移中的表现 首次系统评估并比较了放射组学和深度学习模型在甲状腺癌淋巴结转移预测中的诊断准确性 研究间存在异质性,需要进一步研究优化这些影像工具 评估CT/MRI为基础的放射组学和深度学习模型在甲状腺癌淋巴结转移预测中的诊断价值 甲状腺癌患者的淋巴结转移情况 digital pathology thyroid cancer CT/MRI-based radiomics, deep learning DL models medical imaging 16项研究的数据 NA NA NA NA
9124 2025-06-05
Brain tumor segmentation and detection in MRI using convolutional neural networks and VGG16
2025-Mar, Cancer biomarkers : section A of Disease markers IF:2.2Q3
research paper 本研究探讨了使用卷积神经网络(CNN)和VGG16在MRI图像中自动检测和分类脑肿瘤的方法 提出了一种能够预测分割性能并检测失败事件的深度学习模型,通过mIoU指标提高语义分割的准确性和失败检测 未提及具体的数据集大小或多样性限制,也未讨论模型在不同类型脑肿瘤上的泛化能力 开发一个自动化的脑肿瘤检测系统,以提高诊断速度和准确性 MRI图像中的脑肿瘤 digital pathology brain tumor deep learning, image processing CNN, VGG16 image NA NA NA NA NA
9125 2025-10-06
A Multicenter Evaluation of the Impact of Therapies on Deep Learning-Based Electrocardiographic Hypertrophic Cardiomyopathy Markers
2025-Feb-15, The American journal of cardiology
研究论文 本研究评估了深度学习心电图模型在监测肥厚型心肌病治疗反应中的应用 首次使用AI-ECG技术评估不同疗法(手术/经皮室间隔减容术和口服药物马瓦卡坦)对肥厚型心肌病的生物学反应 样本量有限,仅包含三个医疗中心的患者数据,随访时间可能不足 评估AI-ECG作为监测肥厚型心肌病治疗反应策略的有效性 接受室间隔减容术和马瓦卡坦治疗的肥厚型心肌病患者 医疗人工智能 肥厚型心肌病 人工智能增强心电图 深度学习模型 12导联心电图图像 315名患者(YNHHS 70名,CCF 100名,AHS 145名,另加36名马瓦卡坦治疗患者) NA NA AI-ECG HCM评分,Wilcoxon符号秩检验 NA
9126 2025-10-06
Extraction of agricultural plastic greenhouses based on a U-Net convolutional neural network coupled with edge expansion and loss function improvement
2025-Feb, Journal of the Air & Waste Management Association (1995)
研究论文 本研究通过改进U-Net卷积神经网络,结合边缘扩展和损失函数优化,实现了农业塑料大棚的高精度遥感提取 提出结合Canny算子和高斯核函数进行样本边缘扩展,并使用二元交叉熵和高斯核函数联合约束损失函数,从而提升U-Net模型对农业塑料大棚的提取精度 NA 提高农业塑料大棚的位置和数量提取精度,为农业管理和环境监测提供快速准确的方法 农业塑料大棚 计算机视觉 NA 遥感技术 CNN 遥感图像 NA NA U-Net 提取精度 NA
9127 2025-06-05
A CT-based deep learning for segmenting tumors and predicting microsatellite instability in patients with colorectal cancers: a multicenter cohort study
2025-Feb, La Radiologia medica
研究论文 开发并验证基于术前增强CT图像的深度学习模型,用于结直肠癌肿瘤自动分割和微卫星不稳定性预测 结合增强CT图像和临床病理因素,利用深度学习模型预测微卫星不稳定性,提高了诊断性能 研究为回顾性设计,可能存在选择偏倚 开发深度学习模型用于结直肠癌肿瘤分割和微卫星不稳定性预测 结直肠癌患者 数字病理 结直肠癌 免疫组织化学、荧光多重聚合酶链反应-毛细管电泳 nnU-Net、ViT、CNN CT图像 2180名患者(训练组1159名,验证组289名,外部测试组732名) NA NA NA NA
9128 2025-10-06
Weakly Supervised Multiple Instance Learning Model With Generalization Ability for Clinical Adenocarcinoma Screening on Serous Cavity Effusion Pathology
2025-Feb, Modern pathology : an official journal of the United States and Canadian Academy of Pathology, Inc IF:7.1Q1
研究论文 本研究提出一种弱监督多示例学习模型,用于浆膜腔积液中腺癌细胞的临床筛查 首次将细胞块技术与弱监督深度学习模型结合,采用多示例学习方法进行浆膜腺癌筛查 NA 提高浆膜腔积液中腺癌细胞的筛查效率和诊断准确性 浆膜腔积液中的腺癌细胞 数字病理学 腺癌 细胞块技术,全玻片成像 弱监督深度学习,多示例学习 病理图像 NA NA NA NA NA
9129 2025-06-05
Protein-protein interaction detection using deep learning: A survey, comparative analysis, and experimental evaluation
2025-Feb, Computers in biology and medicine IF:7.0Q1
综述 本文全面分析了用于检测蛋白质-蛋白质相互作用(PPIs)的各种深度学习技术,并进行了详细的实验评估 对多种深度学习技术在PPI检测中的性能进行了比较分析,并提出了未来改进方向 DNN存在过拟合和可解释性低的问题,LSTM网络存在可扩展性挑战 评估深度学习技术在蛋白质-蛋白质相互作用检测中的应用效果 蛋白质-蛋白质相互作用 机器学习 NA 深度学习 DNN, CNN, GSN, LSTM 生物序列数据 NA NA NA NA NA
9130 2025-06-05
Lifestyle factors and other predictors of common mental disorders in diagnostic machine learning studies: A systematic review
2025-Feb, Computers in biology and medicine IF:7.0Q1
系统综述 该研究通过系统综述评估机器学习模型在预测常见精神障碍中的应用,重点关注生活方式数据的作用 首次评估诊断性机器学习在常见精神障碍中的效用,并评估预测变量类型 研究存在高度异质性和偏倚风险,生活方式数据利用不足 评估机器学习模型预测常见精神障碍的性能,并确定生活方式数据在模型中的潜在益处 成年人常见精神障碍 机器学习 精神障碍 机器学习 深度学习 多模态数据(包括生活方式、生物、人口统计-环境数据) 117项研究(111项仅模型开发,16项开发与验证) NA NA NA NA
9131 2025-06-05
Detection of periodontal bone loss and periodontitis from 2D dental radiographs via machine learning and deep learning: systematic review employing APPRAISE-AI and meta-analysis
2025-02-01, Dento maxillo facial radiology
系统综述 本文通过系统综述和荟萃分析评估了人工智能在牙科全景和根尖周X光片上评估牙槽骨丢失和牙周炎的应用 使用APPRAISE-AI工具对AI研究进行定量评估,并通过荟萃分析综合评估模型性能 纳入研究的质量参差不齐,缺乏非常高质量的研究,且AI研究的透明度和报告标准有待提高 评估人工智能在牙周炎和牙槽骨丢失诊断中的应用效果 牙科全景和根尖周X光片 数字病理 牙周炎 深度学习 NA 图像 30篇论文(其中10篇符合荟萃分析条件) NA NA NA NA
9132 2025-06-05
Challenges and compromises: Predicting unbound antibody structures with deep learning
2025-Feb, Current opinion in structural biology IF:6.1Q1
研究论文 本文探讨了利用深度学习预测未结合抗体结构的挑战与妥协 讨论了生成模型可能解决未结合抗体结构预测中的问题,并评估了构象异质性对结合动力学的影响 由于结构数据偏向抗体-抗原复合物,深度学习模型在未结合形式上的泛化能力可能受限 改进抗体开发流程中未结合结构的预测 未结合抗体,特别是CDRH3环 机器学习 NA 深度学习 生成模型 结构数据 NA NA NA NA NA
9133 2025-10-06
Radiomics-guided generative adversarial network for automatic primary target volume segmentation for nasopharyngeal carcinoma using computed tomography images
2025-Feb, Medical physics IF:3.2Q1
研究论文 提出一种基于瘤周影像组学引导的生成对抗网络,用于鼻咽癌CT图像的原发肿瘤靶区自动分割 首次将瘤周影像组学特征作为先验知识融入生成对抗网络,解决CT图像中肿瘤边界不清的分割难题 样本量相对有限(157例患者),且仅基于CT图像 提高鼻咽癌原发肿瘤靶区在CT图像上的自动分割精度 鼻咽癌患者的CT图像 医学影像分析 鼻咽癌 CT成像 GAN CT图像 157例鼻咽癌患者(训练集108例,验证集9例,测试集30例) NA 生成对抗网络 Dice相似系数, 95% Hausdorff距离, 平均对称表面距离 NA
9134 2025-06-05
Advancements in Frank's sign Identification using deep learning on 3D brain MRI
2025-01-18, Scientific reports IF:3.8Q1
research paper 本研究开发了一种深度学习模型,用于在3D面部MRI图像中自动识别Frank's sign(FS) 首次使用深度学习技术对3D脑部MRI图像中的FS进行自动分割和识别 研究仅基于有限数量的MRI扫描样本(400例训练集+600例验证集) 开发自动化的FS检测工具以改善临床诊断 3D面部MRI图像中的Frank's sign标记 digital pathology geriatric disease MRI扫描 U-net 3D图像 400例训练集MRI扫描+600例验证集MRI扫描(两个外部数据集各300例) NA NA NA NA
9135 2025-06-05
Comparison of 1D and 3D volume measurement techniques in NF2-associated vestibular schwannoma monitoring
2025-01-17, Scientific reports IF:3.8Q1
research paper 比较1D(线性)和3D分割体积分析(SVA)在NF2相关前庭神经鞘瘤(VS)监测中的效果 首次系统地比较了1D线性测量和3D分割体积分析在NF2相关前庭神经鞘瘤监测中的效果,并提出了正交分析(OA)作为更优的时间节省替代方案 小肿瘤或手术缩小后的肿瘤存在较大的测量离散范围,不适用于需要精确评估肿瘤体积和生长的治疗决策 评估不同肿瘤体积测量技术在NF2相关前庭神经鞘瘤监测中的效果 NF2相关前庭神经鞘瘤 医学影像分析 前庭神经鞘瘤 MRI, 3D分割体积分析(SVA) 线性回归模型 医学影像 149名NF2患者和292个相关前庭神经鞘瘤,共进行了2586次SVA和10344次线性测量 NA NA NA NA
9136 2025-06-05
Exploring the anticancer activities of Sulfur and magnesium oxide through integration of deep learning and fuzzy rough set analyses based on the features of Vidarabine alkaloid
2025-01-17, Scientific reports IF:3.8Q1
research paper 该研究结合深度学习和模糊粗糙集分析,探索硫和氧化镁的抗癌活性,基于Vidarabine生物碱的特征 提出了一种结合深度学习、模糊粗糙集理论和可解释人工智能的AI模型,用于发现基于天然产物的新型抗癌药物候选物 研究仅针对特定细胞系进行了验证,需要进一步的临床前研究 探索和发现新型抗癌药物候选物 硫和氧化镁作为潜在的抗癌药物 machine learning lung cancer 深度学习、模糊粗糙集理论、可解释人工智能 DL, FRS, XAI 化学化合物特征数据 针对A-549、A-375和A-431细胞系的实验室实验数据 NA NA NA NA
9137 2025-06-05
Automatic detection and prediction of COVID-19 in cough audio signals using coronavirus herd immunity optimizer algorithm
2025-01-17, Scientific reports IF:3.8Q1
研究论文 本研究提出了一种基于深度学习的框架,利用咳嗽音频信号自动检测和预测COVID-19 使用增强深度神经网络(EDNN)和冠状病毒群体免疫优化器(CHIO)算法,显著降低了误差指标 NA 开发高效的COVID-19诊断工具 COVID-19患者的咳嗽音频信号 数字病理学 COVID-19 深度学习 EDNN-CHIO, U-Net 音频 来自COUGHVID数据集的音频数据 NA NA NA NA
9138 2025-06-05
Interpretable and integrative deep learning for discovering brain-behaviour associations
2025-01-17, Scientific reports IF:3.8Q1
research paper 提出一个可解释和整合的深度学习框架,用于发现大脑与行为之间的关联 结合数字化身和稳定性选择来评估多视图数据之间的关系,有效识别稳定的大脑-行为交互 未提及具体样本量的限制或模型在更广泛数据集上的泛化能力 研究精神疾病的复杂性和变异性,通过整合多源数据来理解和预测精神综合征 健康脑网络队列中的临床行为评分和脑成像特征 machine learning psychiatric syndromes deep learning, structural MRI deep learning models imaging, genetics, symptom reports Healthy Brain Network cohort(具体数量未提及) NA NA NA NA
9139 2025-06-05
Clinical feasibility of deep learning-driven magnetic resonance angiography collateral map in acute anterior circulation ischemic stroke
2025-01-17, Scientific reports IF:3.8Q1
研究论文 验证深度学习驱动的磁共振血管造影(DL-driven MRA)侧支循环图在急性缺血性卒中中的临床可行性 提出了一种名为3D-MROD-Net的3D多任务回归和有序回归深度神经网络,用于生成DL-driven MRA侧支循环图,并在临床应用中显示出更高的效率和图像质量 研究仅针对296名急性缺血性卒中患者,样本量可能不足以代表所有相关病例 验证DL-driven MRA侧支循环图在急性缺血性卒中中的临床可行性 急性缺血性卒中患者 数字病理学 心血管疾病 磁共振血管造影(MRA) 3D-MROD-Net 图像 296名急性缺血性卒中患者 NA NA NA NA
9140 2025-06-05
Optimized digital workflow for pathologist-grade evaluation in bleomycin-induced pulmonary fibrosis mouse model
2025-01-17, Scientific reports IF:3.8Q1
research paper 开发了一种优化的数字工作流程,用于在博来霉素诱导的肺纤维化小鼠模型中实现病理学家级别的评估 开发了深度学习模型,用于肺纤维化分级,其准确性可与病理学家相媲美,并整合了复杂的图像模式和定性因素 NA 优化博来霉素诱导的肺纤维化小鼠模型的评估工作流程,以提高药物开发的效率和可重复性 博来霉素诱导的肺纤维化小鼠模型 digital pathology lung cancer deep learning CNN image NA NA NA NA NA
回到顶部