深度学习在生物医药领域中的应用

本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!

如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!

Sample Image
添加微信请说明来意
Sample Image
微信赞赏

除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。

当前筛选条件: [分区不过滤] [IF不过滤] [发表日期不过滤] [清除筛选条件]
当前共找到 24240 篇文献,本页显示第 9221 - 9240 篇。
序号 推送日期 文章 类型 简述 创新点 不足 研究目的 研究对象 领域 病种 技术 模型 数据类型 样本量
9221 2025-01-04
Deep Learning for Visual Speech Analysis: A Survey
2024-09, IEEE transactions on pattern analysis and machine intelligence IF:20.8Q1
综述 本文综述了深度学习在视觉语音分析领域的最新进展,包括基本问题、挑战、基准数据集、现有方法的分类以及最先进的性能 提供了视觉语音分析领域的全面综述,识别了当前研究中的空白,并讨论了未来的研究方向 未涉及具体实验验证,仅为基础性综述 推动视觉语音领域的未来研究 视觉语音分析 计算机视觉 NA 深度学习 NA 视频 NA
9222 2025-01-04
Enhancing Aviation Safety through AI-Driven Mental Health Management for Pilots and Air Traffic Controllers
2024-Aug, Cyberpsychology, behavior and social networking
研究论文 本文探讨了利用人工智能技术提升飞行员和空中交通管制员心理健康管理,以增强航空安全 提出了一个多学科的心理健康生态系统,结合AI工具和技术,用于监测和预测心理健康问题,从而预防由人为因素引起的空难 需要多学科专家的协作,实施复杂且可能面临技术和隐私挑战 通过AI驱动的心理健康管理,提高飞行员和空中交通管制员的心理健康,从而增强航空安全 飞行员和空中交通管制员 机器学习 NA 机器学习和深度学习,边缘和云计算,虚拟现实,可穿戴多模态生理传感器 NA 生理、认知和行为状态数据 NA
9223 2025-01-04
Using artificial intelligence to generate medical literature for urology patients: a comparison of three different large language models
2024-Jul-29, World journal of urology IF:2.8Q2
研究论文 本研究比较了三种不同的大型语言模型(LLMs)在生成泌尿科患者信息传单(PILs)方面的质量 首次比较了ChatGPT-4、PaLM 2和Llama 2三种LLMs在生成泌尿科患者信息传单方面的表现,并评估了其质量和可读性 生成的传单内容存在医学不准确性,且所有LLM生成的传单的阅读水平均高于成人平均水平,需要进一步改进算法和提示设计 评估LLMs在生成泌尿科患者信息传单方面的质量,以减轻医疗专业人员的工作负担 泌尿科患者信息传单 自然语言处理 泌尿系统疾病 大型语言模型(LLMs) ChatGPT-4, PaLM 2, Llama 2 文本 四种泌尿科主题(包皮环切术、肾切除术、膀胱过度活动症综合征和经尿道前列腺切除术)的传单
9224 2025-01-04
A Multi-Level Interpretable Sleep Stage Scoring System by Infusing Experts' Knowledge Into a Deep Network Architecture
2024-07, IEEE transactions on pattern analysis and machine intelligence IF:20.8Q1
研究论文 本文设计了一个可解释的深度学习系统,用于脑电图(EEG)时间序列分类,以进行睡眠阶段评分 开发了一个包含基于核的卷积层的可解释深度神经网络,该层由人类专家在视觉分析多导睡眠图记录时使用的原则指导 未明确提及具体局限性 设计一个透明的深度学习系统,用于EEG时间序列分类以进行睡眠阶段评分 脑电图(EEG)信号 计算机视觉 NA 深度学习 深度神经网络 时间序列数据 未明确提及样本数量
9225 2025-01-04
Glioblastoma and radiotherapy: A multicenter AI study for Survival Predictions from MRI (GRASP study)
2024-06-03, Neuro-oncology IF:16.4Q1
研究论文 本研究旨在通过深度学习技术,利用放疗后首次脑部MRI图像预测胶质母细胞瘤患者在8个月后的生存情况 首次将深度学习应用于放疗后胶质母细胞瘤患者的MRI图像,以预测其生存期,并结合非影像数据进行综合分析 样本量相对有限,且部分数据为回顾性数据,可能存在偏差 预测胶质母细胞瘤患者在放疗后8个月的生存情况 206名胶质母细胞瘤患者 数字病理学 胶质母细胞瘤 深度学习 神经网络 MRI图像 206名患者(158名回顾性数据,19名内部验证,29名外部验证)
9226 2025-01-04
Semi-Supervised Learning for Multi-Label Cardiovascular Diseases Prediction: A Multi-Dataset Study
2024-05, IEEE transactions on pattern analysis and machine intelligence IF:20.8Q1
研究论文 本文提出了一种多标签半监督模型ECGMatch,用于在有限监督下同时识别多种心血管疾病 提出了ECGAugment模块进行ECG数据增强,设计了超参数高效框架用于伪标签生成和优化,并提出了标签相关性对齐模块以捕捉不同心血管疾病的共现信息 模型在未见过的数据集上的性能仍需进一步验证 解决心电图(ECG)诊断系统中标签稀缺、多种心血管疾病共现及在未见数据集上表现不佳的问题 心血管疾病(CVDs) 机器学习 心血管疾病 深度学习 半监督学习模型(ECGMatch) ECG数据 四个数据集
9227 2025-01-04
A Dempster-Shafer Approach to Trustworthy AI With Application to Fetal Brain MRI Segmentation
2024-05, IEEE transactions on pattern analysis and machine intelligence IF:20.8Q1
研究论文 本文提出了一种基于Dempster-Shafer理论的可信AI框架和实用系统,用于增强任何骨干AI系统,通过回退方法和故障安全机制来提高医学图像分割的鲁棒性 提出了一种新的可信AI理论框架和实用系统,结合Dempster-Shafer理论,自动丢弃违反专家知识的体素级标签,并使用回退方法处理这些体素 NA 提高医学图像分割的鲁棒性,确保AI模型在不同中心和病理情况下的可靠性 胎儿脑部MRI图像 医学图像处理 胎儿脑部异常 Dempster-Shafer理论 深度学习模型 3D T2w MRI图像 540个手动标注的胎儿脑部3D T2w MRI图像,来自13个中心
9228 2025-01-04
UroAngel: a single-kidney function prediction system based on computed tomography urography using deep learning
2024-Apr-16, World journal of urology IF:2.8Q2
研究论文 本文介绍了一种基于深度学习的系统UroAngel,用于通过计算机断层扫描尿路造影(CTU)图像无创预测单肾功能水平 开发了基于3D U-Net卷积神经网络的系统UroAngel,能够准确分割肾皮质并预测肾功能阶段,性能优于传统方法和放射科医生 研究样本量有限,仅包括520名梗阻性肾病患者,且仅在40名患者中进行了临床验证 开发一种非侵入性且便捷的单肾功能水平预测系统 梗阻性肾病(ON)患者 数字病理学 肾病 计算机断层扫描尿路造影(CTU) 3D U-Net 图像 520名梗阻性肾病患者
9229 2025-01-04
Revisiting Computer-Aided Tuberculosis Diagnosis
2024-04, IEEE transactions on pattern analysis and machine intelligence IF:20.8Q1
研究论文 本文探讨了利用深度学习进行计算机辅助结核病诊断(CTD)的进展,并提出了一个新的数据集和基线模型 提出了一个大规模数据集TBX11 K,包含11,200张胸部X光图像,并提出了SymFormer模型,该模型结合了对称搜索注意力(SymAttention)和对称位置编码(SPE)以提高诊断性能 尽管提出了新的数据集和模型,但研究的局限性在于CXR图像可能不完全遵循双边对称性,这可能会影响模型的性能 提高计算机辅助结核病诊断的准确性和效率 胸部X光图像 计算机视觉 结核病 深度学习 SymFormer 图像 11,200张胸部X光图像
9230 2025-01-04
Deep learning using contrast-enhanced ultrasound images to predict the nuclear grade of clear cell renal cell carcinoma
2024-Mar-21, World journal of urology IF:2.8Q2
研究论文 本文评估了使用对比增强超声(CEUS)图像的深度学习模型在区分低级别(I级和II级)和高级别(III级和IV级)透明细胞肾细胞癌(ccRCC)中的有效性 提出了基于RepVGG架构的深度学习模型,用于区分ccRCC的核级别,并利用类激活映射(CAM)可视化模型预测的关键区域 研究为回顾性研究,样本量相对较小(177例ccRCC),且仅使用了单一机构的CEUS图像数据 评估深度学习模型在非侵入性区分ccRCC核级别中的有效性 透明细胞肾细胞癌(ccRCC)患者 计算机视觉 肾癌 对比增强超声(CEUS) RepVGG 图像 177例ccRCC(93例低级别,84例高级别),共6412张CEUS图像
9231 2025-01-04
Improved Transfer Learning for Detecting Upper-Limb Movement Intention Using Mechanical Sensors in an Exoskeletal Rehabilitation System
2024, IEEE transactions on neural systems and rehabilitation engineering : a publication of the IEEE Engineering in Medicine and Biology Society IF:4.8Q1
研究论文 本研究提出了一种利用深度和异构迁移学习技术从机械传感器信号中检测上肢运动意图的新策略 结合了三种传感器(sEMG、FSR和IMU)来捕捉生物信号,并使用CIFAR-ResNet18和CIFAR-MobileNetV2架构构建深度学习模型,通过优化技术确定每层的适当结构和学习率 NA 检测上肢运动意图,以改进康复辅助机器人的人机协作 上肢运动意图 机器学习 NA 深度学习和迁移学习 CIFAR-ResNet18, CIFAR-MobileNetV2 机械传感器信号(sEMG、FSR、IMU) NA
9232 2025-01-04
Automatic Gaze Analysis: A Survey of Deep Learning Based Approaches
2024-01, IEEE transactions on pattern analysis and machine intelligence IF:20.8Q1
综述 本文综述了基于深度学习的自动视线分析方法及其在计算机视觉和人机交互领域的应用 本文特别关注了无监督和弱监督领域的视线估计和分割方法,并分析了这些方法的优势和评估指标 开发一个鲁棒且通用的视线分析方法仍需解决现实世界中的挑战,如无约束设置和较少监督的学习 探讨自动视线分析中的重要线索及其在无约束环境中的实时编码方法 视线分析任务和应用 计算机视觉 NA 深度学习 NA 图像 NA
9233 2025-01-04
Deep learning-based method for segmenting epithelial layer of tubules in histopathological images of testicular tissue
2023-Feb, Journal of medical imaging (Bellingham, Wash.)
研究论文 本文提出了一种基于深度学习的自动化方法,用于分割睾丸组织病理图像中的生精小管上皮层 使用ResNet-34作为特征编码器模块,并在编码模块中集成了压缩和激励注意力块,以提高上皮层的分割和定位效果 尽管在有限训练集上表现良好,但训练集规模较小 开发自动化方法以检测睾丸组织中的异常 睾丸组织中的生精小管上皮层 数字病理学 NA 深度学习 CNN 图像 NA
9234 2025-01-04
ViTab Transformer Framework for Predicting Induced Electric Field and Focality in Transcranial Magnetic Stimulation
2023, IEEE transactions on neural systems and rehabilitation engineering : a publication of the IEEE Engineering in Medicine and Biology Society IF:4.8Q1
研究论文 本研究开发了一种基于深度学习的ViTab Transformer模型,用于预测经颅磁刺激中的感应电场和聚焦性,以替代耗时的电磁模拟软件 提出了ViTab Transformer模型,通过考虑多个输入参数(如MRI图像源、线圈类型、线圈位置、电流变化率、脑组织导电性和线圈与头皮的距离)来预测电场最大值、刺激面积和刺激体积,克服了现有模型仅考虑少数输入参数的局限性 未提及具体局限性 开发一种深度学习模型,以提高经颅磁刺激在神经系统疾病治疗中的效果和寻找新的临床应用 经颅磁刺激中的感应电场和聚焦性 机器学习 神经系统疾病 深度学习 Transformer 图像和表格数据 未提及具体样本数量
9235 2025-01-04
A Probability Fusion Approach for Foot Placement Prediction in Complex Terrains
2023, IEEE transactions on neural systems and rehabilitation engineering : a publication of the IEEE Engineering in Medicine and Biology Society IF:4.8Q1
研究论文 本文提出了一种概率融合方法,用于预测复杂地形中的足部放置,以更好地辅助下肢残疾人士的日常行走 该方法结合了深度学习模型和环境信息,能够在复杂地形中预测下一步的足部放置,相比现有研究在复杂地形中实现了更快和更准确的预测 实验主要针对结构化地形和复杂地形,未涉及更多样化的地形或更广泛的用户群体 研究目的是开发一种能够在复杂地形中预测足部放置的方法,以辅助下肢残疾人士的行走 研究对象为下肢残疾人士在复杂地形中的足部放置 机器学习 下肢残疾 深度学习 深度学习模型 增强数据 实验包括结构化地形实验和复杂地形实验
9236 2025-01-04
Depression Identification Using EEG Signals via a Hybrid of LSTM and Spiking Neural Networks
2023, IEEE transactions on neural systems and rehabilitation engineering : a publication of the IEEE Engineering in Medicine and Biology Society IF:4.8Q1
研究论文 本文提出了一种结合LSTM和脉冲神经网络(SNN)的新框架,用于通过EEG信号有效分类个体抑郁水平 首次将SNN架构与LSTM结构结合,模拟抑郁不同阶段的大脑基础结构,并利用原始EEG信号进行分类 NA 通过EEG信号定量评估抑郁严重程度,并分类个体抑郁水平 抑郁患者的EEG信号 机器学习 抑郁症 EEG信号分析 LSTM, SNN EEG信号 NA
9237 2025-01-04
Graph Reasoning Module for Alzheimer's Disease Diagnosis: A Plug-and-Play Method
2023, IEEE transactions on neural systems and rehabilitation engineering : a publication of the IEEE Engineering in Medicine and Biology Society IF:4.8Q1
研究论文 本文提出了一种图推理模块(GRM),用于增强基于卷积神经网络(CNN)的阿尔茨海默病(AD)检测模型,通过模拟不同脑区之间的潜在关系来提高诊断性能 提出了一种可即插即用的图推理模块(GRM),结合自适应图Transformer(AGT)块、图卷积网络(GCN)块和特征图重建(FMR)块,有效解决了CNN方法在关联空间远距离信息上的不足 未提及具体局限性 提高阿尔茨海默病(AD)的诊断性能 阿尔茨海默病(AD)患者的结构磁共振成像(sMRI)数据 计算机视觉 老年病 结构磁共振成像(sMRI) CNN, 自适应图Transformer(AGT), 图卷积网络(GCN) 图像 未提及具体样本数量
9238 2025-01-04
LSTM-MSA: A Novel Deep Learning Model With Dual-Stage Attention Mechanisms Forearm EMG-Based Hand Gesture Recognition
2023, IEEE transactions on neural systems and rehabilitation engineering : a publication of the IEEE Engineering in Medicine and Biology Society IF:4.8Q1
研究论文 本文介绍了一种结合长短期记忆网络和双阶段注意力机制的LSTM-MSA模型,用于分析肌电图(EMG)信号,以提高手势识别的准确性和鲁棒性 LSTM-MSA模型结合了LSTM层和注意力机制,能够有效捕捉相关信号特征并准确预测意图动作,具有双阶段注意力、端到端特征提取与分类集成以及个性化训练等显著特点 NA 提高EMG信号在手势识别中的准确性和鲁棒性,应用于假肢控制、康复和人机交互等领域 肌电图(EMG)信号 机器学习 NA NA LSTM 信号 多个数据集
9239 2025-01-04
Mixture of Experts for EEG-Based Seizure Subtype Classification
2023, IEEE transactions on neural systems and rehabilitation engineering : a publication of the IEEE Engineering in Medicine and Biology Society IF:4.8Q1
研究论文 本文提出了两种新颖的专家混合模型(MoE),Seizure-MoE和Mix-MoE,用于基于EEG的癫痫亚型分类 Mix-MoE模型通过引入不平衡采样器和整合手动EEG特征的先验知识,解决了类别不平衡和缺乏先验知识的问题 需要大量标记的EEG样本来训练模型,且模型在其他EEG分类问题上的扩展性尚未完全验证 提高基于EEG的癫痫亚型分类的准确性和效率 癫痫患者的EEG数据 机器学习 癫痫 EEG Mixture of Experts (MoE), Seizure-MoE, Mix-MoE EEG信号 两个公共数据集
9240 2025-01-04
Accurate COP Trajectory Estimation in Healthy and Pathological Gait Using Multimodal Instrumented Insoles and Deep Learning Models
2023, IEEE transactions on neural systems and rehabilitation engineering : a publication of the IEEE Engineering in Medicine and Biology Society IF:4.8Q1
研究论文 本研究介绍了一种新型深度循环神经网络,通过融合来自经济型异质鞋垫嵌入式传感器的数据,准确估计动态COP轨迹 使用深度循环神经网络融合低成本传感器数据,实现在实验室外环境中准确估计COP轨迹 需要进一步验证在不同病理条件下的广泛适用性 开发一种在实验室外环境中准确测量COP轨迹的方法,以评估步态和平衡功能的变化 健康个体和神经肌肉疾病患者 机器学习 神经肌肉疾病 深度循环神经网络 RNN 传感器数据(FSR和IMU) 健康个体和神经肌肉疾病患者
回到顶部