深度学习在生物医药领域的应用

本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新(使用关键词“['deep learning']”过滤),已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!

如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!

Sample Image
添加微信请说明来意
Sample Image
微信赞赏

除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价19.9元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。

当前筛选条件: [分区不过滤] [IF不过滤] [发表日期不过滤] [清除筛选条件]
当前共找到 32843 篇文献,本页显示第 9321 - 9340 篇。
序号 推送日期 文章 类型 简述 创新点 不足 研究目的 研究对象 领域 病种 技术 模型 数据类型 样本量 算法框架 模型架构 性能指标 计算资源
9321 2025-06-08
Application of artificial intelligence in modern healthcare for diagnosis of autism spectrum disorder
2025, Frontiers in medicine IF:3.1Q1
research paper 本研究探讨了深度学习算法在通过儿童面部特征识别自闭症谱系障碍(ASD)中的应用 提出使用Inception-V3模型进行ASD诊断,准确率达到98%,优于现有迁移学习算法 研究仅基于面部图像数据,未考虑其他行为或生理指标 提高自闭症谱系障碍的早期诊断准确性和效率 自闭症谱系障碍儿童的面部特征 digital pathology geriatric disease deep learning Inception-V3, ResNet50, VGG-19 image 2,940张儿童面部图像 NA NA NA NA
9322 2025-06-08
Design of Chinese traditional Jiaoyi (Folding chair) based on Kansei Engineering and CNN-GRU-attention
2025, Frontiers in neuroscience IF:3.2Q2
research paper 本研究通过跨学科方法创新性地提升中国传统折叠椅(交椅)设计中的个性化情感响应和用户体验质量 结合Kansei工程和CNN-GRU-attention混合深度学习模型,提出了一种量化智能设计范式,用于文化遗产的现代化 未提及具体样本量或数据收集的局限性 系统提取用户情感特征,提升传统家具设计的个性化和用户体验 中国传统折叠椅(交椅) computational design NA web-behavior data mining, KJ method, semantic crawlers, fuzzy comprehensive assessment, random forest, K-prototype clustering CNN-GRU-Attention hybrid deep learning model multi-source social data NA NA NA NA NA
9323 2025-06-08
Deep learning-guided structural analysis of a novel bacteriophage KPP105 against multidrug-resistant Klebsiella pneumoniae
2025, Computational and structural biotechnology journal IF:4.4Q2
研究论文 本研究通过深度学习方法对新型噬菌体KPP105进行了生理、基因组和结构分析,揭示了其对抗多重耐药肺炎克雷伯菌的潜力 首次对新型噬菌体KPP105进行了全面的生理、基因组和结构分析,特别是利用深度学习技术分析了其宿主相互作用蛋白的结构 未提及实验样本量及具体实验验证数据 研究新型噬菌体KPP105的特性及其对抗多重耐药细菌的潜力 新型噬菌体KPP105及其宿主相互作用蛋白 生物信息学 多重耐药细菌感染 深度学习、基因组分析、结构分析 深度学习模型 基因组数据、蛋白质结构数据 NA NA NA NA NA
9324 2025-06-08
High throughput assessment of blueberry fruit internal bruising using deep learning models
2025, Frontiers in plant science IF:4.1Q1
研究论文 该研究利用深度学习模型快速量化蓝莓果实内部淤伤,为机器收获蓝莓提供高效评估方法 首次将YOLO检测和分割模型应用于蓝莓内部淤伤评估,开发了用户友好界面并公开模型 淤伤比率与真实值的相关性为0.69,平均绝对百分比误差为15.87%,存在一定误差 开发高效评估蓝莓内部淤伤的方法,以促进适合机器收获的蓝莓品种培育 61个软硬程度不同的蓝莓品种 计算机视觉 NA 深度学习 YOLO检测模型和分割模型 图像 2021-2023年期间61个蓝莓品种的果实 NA NA NA NA
9325 2025-06-08
DualCMNet: a lightweight dual-branch network for maize variety identification based on multi-modal feature fusion
2025, Frontiers in plant science IF:4.1Q1
研究论文 提出了一种基于多模态特征融合的轻量级双分支网络DualCMNet,用于玉米品种识别 引入HShuffleBlock特征转换模块、CBAM注意力机制和轻量级门控融合模块,动态调整特征权重,实现高精度和低计算开销的平衡 仅针对11种玉米品种进行测试,未验证在其他作物上的泛化能力 开发一种轻量级多模态融合网络,用于玉米品种的高效准确识别 11种玉米品种的多模态数据(高光谱数据和图像数据) 计算机视觉 NA 高光谱数据处理和空间特征提取 1D-CNN和MobileNetV3 高光谱数据和图像数据 11种玉米品种的多模态数据 NA NA NA NA
9326 2025-06-08
Global trends in the use of artificial intelligence for urological tumor histopathology: A 20-year bibliometric analysis
2025 Jan-Dec, Digital health IF:2.9Q2
研究论文 本文通过20年的文献计量分析,探讨了人工智能在泌尿系统肿瘤病理学中的全球研究趋势和创新 首次对人工智能在泌尿系统肿瘤病理学中的应用进行了长达20年的全球文献计量分析,揭示了研究趋势、主要贡献者和未来发展方向 研究仅基于Web of Science数据库的文献,可能存在遗漏;临床转化面临数据偏差、模型可解释性和伦理监管等挑战 分析人工智能在泌尿系统肿瘤病理学中的全球研究趋势和创新 199篇关于AI在泌尿系统肿瘤病理学中应用的论文 数字病理学 前列腺癌 文献计量分析(CiteSpace, VOSviewer) 机器学习, 深度学习 文献数据 199篇论文 NA NA NA NA
9327 2025-06-08
YOLO-ODD: an improved YOLOv8s model for onion foliar disease detection
2025, Frontiers in plant science IF:4.1Q1
research paper 本文提出了一种改进的YOLOv8s模型YOLO-ODD,用于检测洋葱叶部病害 通过集成CABM和DTAH注意力机制,改进了YOLOv8模型,提高了对洋葱叶部病害的检测准确率 NA 开发一种能够早期检测洋葱叶部病害的深度学习模型 洋葱叶部病害(炭疽病、茎枯病、紫斑病和扭曲病) computer vision plant disease deep learning YOLOv8 image NA NA NA NA NA
9328 2025-06-08
Chinese Clinical Named Entity Recognition With Segmentation Synonym Sentence Synthesis Mechanism: Algorithm Development and Validation
2024-11-21, JMIR medical informatics IF:3.1Q2
研究论文 本文提出了一种基于邻近词计算的临床命名实体识别数据集增强算法,以解决数据稀缺和标注困难的问题 提出了一种基于邻近词汇的分段同义句合成(SSSS)算法,无需手动扩展专业领域词典,通过词汇分段和重组实现数据集的邻近扩展表达 算法依赖于现有公共知识,可能无法覆盖所有专业领域的词汇 解决临床命名实体识别任务中的数据稀缺和标注困难问题 电子病历文本中的命名实体 自然语言处理 NA RoBERTa, CRF, BiLSTM SSSS + RoBERTa + CRF, SSSS + RoBERTa + BiLSTM + CRF 文本 CCKS-2017和CCKS-2019数据集 NA NA NA NA
9329 2025-10-06
Bidirectional Long Short-Term Memory-Based Detection of Adverse Drug Reaction Posts Using Korean Social Networking Services Data: Deep Learning Approaches
2024-11-20, JMIR medical informatics IF:3.1Q2
研究论文 本研究开发了一种基于双向长短期记忆网络的深度学习模型,用于从韩国社交网络服务数据中自动检测药物不良反应帖子 首次针对韩语SNS数据开发了基于Bi-LSTM的药物不良反应检测模型,并提出了从药物名称-不良反应词对关联分析到模型构建的完整流程 研究仅针对两种非甾体抗炎药进行验证,模型在其他药物类型上的泛化能力需要进一步验证 开发能够自动监测药物不良反应的深度学习分类模型 韩国社交网络服务中的药物相关信息帖子 自然语言处理 药物不良反应 自然语言处理, 关联分析 Bi-LSTM 文本 2005年至2020年期间的博客帖子、咖啡馆帖子和NAVER问答帖子 NA Bidirectional Long Short-Term Memory 准确率, AUC NA
9330 2025-10-06
Dissecting the regulatory logic of specification and differentiation during vertebrate embryogenesis
2024-Aug-27, bioRxiv : the preprint server for biology
研究论文 本研究通过构建斑马鱼胚胎发育的单细胞多组学图谱,揭示了脊椎动物胚胎发生的基因调控逻辑 发现了Nanog在启动中内胚层基因增强子可及性的新功能,提出了'即时分化'新概念,揭示了由母源沉积调控因子驱动的浅层调控网络 研究主要集中于斑马鱼早期胚胎发育阶段,未验证其他脊椎动物模型的普适性 系统解析脊椎动物胚胎发生过程中细胞类型多样化的基因调控逻辑 斑马鱼早期胚胎发育过程 计算生物学 NA 单细胞多组学测序(RNA表达和染色质可及性) 深度学习模型 DNA序列数据、RNA表达数据、染色质可及性数据 斑马鱼早期胚胎发育阶段的单细胞样本 NA NA NA NA
9331 2025-10-06
Deep Learning Based Metabolite Annotation
2023-07, Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference
研究论文 本研究探索基于深度学习的代谢物注释方法,通过高维光谱数据表示提升分子指纹预测精度 研究高维光谱数据和分子指纹表示以改进分子指纹预测准确性 NA 改进非靶向代谢组学中代谢物注释的准确性 代谢物分子指纹 机器学习 NA 液相色谱-质谱联用(LC-MS), 串联质谱(MS/MS) CNN 质谱数据 来自MoNA存储库和NIST 20的MS/MS光谱数据 NA 卷积神经网络 准确率 NA
9332 2025-10-06
Deep ensemble learning for automated non-advanced AMD classification using optimized retinal layer segmentation and SD-OCT scans
2023-03, Computers in biology and medicine IF:7.0Q1
研究论文 本研究开发了一种基于优化视网膜层分割和深度集成学习的非进展性年龄相关性黄斑变性自动分类方法 结合图割算法与三次样条自动标注11个视网膜边界,并采用集成Bagged Tree和端到端深度学习分类器的深度集成机制 仅针对非进展性AMD分类,未涵盖进展性AMD病例 改进年龄相关性黄斑变性的自动检测与分类 SD-OCT扫描图像中的视网膜层结构 计算机视觉 年龄相关性黄斑变性 SD-OCT扫描,图割算法,三次样条拟合 集成学习,深度学习 医学图像 内部和外部数据集(具体数量未明确说明) NA Bagged Tree,深度学习分类器 错误率,AUC,诊断准确率 NA
9333 2025-06-08
OWAE-Net: COVID-19 detection from ECG images using deep learning and optimized weighted average ensemble technique
2022-Nov, Intelligent systems with applications
research paper 该研究提出了一种名为OWAE-Net的深度学习方法,通过优化加权平均集成技术,利用ECG图像进行COVID-19的多类别分类检测 使用三种深度学习模型的集成方法,并通过网格搜索技术优化加权平均集成技术,提高了COVID-19检测的准确率 NA 开发一种更快、更安全的COVID-19诊断方法 ECG图像 digital pathology COVID-19 deep learning, grid search VGG-19, EfficientNet-B4, DenseNet-121, OWAE image NA NA NA NA NA
9334 2025-06-08
Deep viewing for the identification of Covid-19 infection status from chest X-Ray image using CNN based architecture
2022-Nov, Intelligent systems with applications
research paper 该研究提出了一种基于CNN的深度学习技术,用于从胸部X光图像中自动诊断Covid-19感染状态 使用大量数据集(10,293张X光片)训练和测试模型,并在区分Covid-19和肺炎患者方面取得了99.60%的高准确率 现有技术大多未使用大量数据进行训练和测试,本研究虽然使用了较大数据集,但仍可能存在数据多样性和泛化能力方面的限制 开发一种快速准确的Covid-19自动诊断系统,以辅助临床医生和研究人员 胸部X光图像,包括Covid-19、肺炎和正常患者三类 computer vision Covid-19 深度学习 CNN image 10,293张X光片(其中2,875张为Covid-19患者) NA NA NA NA
9335 2025-06-08
AI-aided on-chip nucleic acid assay for smart diagnosis of infectious disease
2022-May, Fundamental research IF:5.7Q1
research paper 提出了一种结合深度学习和微流控纸基分析设备的AI辅助芯片核酸测定方法,用于智能诊断传染病 首次将AI整合到芯片PCR数据分析中,能够预测qPCR的最终输出和趋势,并探索每个反应的动态和内在特征 NA 提高PCR检测效率,实现传染病的智能诊断 SARS-CoV-2 ORF1ab基因的合成RNA模板 digital pathology infectious disease PCR, deep learning, microfluidic paper-based analytical devices (µPADs) RNN, LSTM, GRU real-time PCR data NA NA NA NA NA
9336 2025-06-08
Novel deep learning approach to model and predict the spread of COVID-19
2022-May, Intelligent systems with applications
研究论文 本文提出了一种名为Deep Sequential Prediction Model (DSPM)的深度学习技术和基于机器学习的Non-parametric Regression Model (NRM)来预测COVID-19的传播 提出了DSPM和NRM两种新模型,用于预测COVID-19的传播,并在公开数据集上验证了其优越性能 未提及模型在实际应用中的泛化能力或对不同地区数据的适应性 开发稳健的人工智能技术以预测COVID-19的传播 COVID-19的传播趋势 机器学习 COVID-19 深度学习、机器学习 DSPM、NRM、SVM、LSTM 公开的新型冠状病毒数据集 NA NA NA NA NA
9337 2025-06-08
Adaptively temporal graph convolution model for epidemic prediction of multiple age groups
2022-Mar, Fundamental research IF:5.7Q1
research paper 提出了一种自适应时间图卷积模型(ATGCN),用于COVID-19和流感的多元时间序列预测,并在不同年龄组中表现出色 ATGCN模型通过图学习方法捕捉多年龄组的接触模式,在短期和长期预测任务中均优于自回归模型和深度序列学习模型 未明确提及模型在其他传染病预测中的泛化能力,且未讨论计算复杂度或实时预测的可行性 探索深度学习在传染病预测领域的应用,特别是针对多年龄组的多元时间序列预测 COVID-19和流感的确诊病例数据,重点关注不同年龄组之间的传播模式 machine learning COVID-19, influenza graph-based deep learning approach ATGCN (adaptively temporal graph convolution model) multivariate time series data 两个数据集(COVID-19和流感),具体样本量未明确说明 NA NA NA NA
9338 2025-06-08
Automatic engagement estimation in smart education/learning settings: a systematic review of engagement definitions, datasets, and methods
2022, Smart learning environments IF:6.7Q1
review 本文系统回顾了智能教育/学习环境中自动参与度估计的最新发展,包括参与度定义、数据集和基于机器学习的方法 提出了一个清晰的分类法来定义参与度,并总结了机器学习方法在自动参与度识别中的应用 存在一些关键挑战,如认知和个性化参与度问题,以及可能影响实际应用的机器学习问题 为研究人员提供关于自动参与度估计的见解,以增强智能学习中的自动参与度识别方法 学习者的参与度 machine learning NA machine learning, deep learning NA dataset 47篇研究文章 NA NA NA NA
9339 2025-06-08
AFCM-LSMA: New intelligent model based on Lévy slime mould algorithm and adaptive fuzzy C-means for identification of COVID-19 infection from chest X-ray images
2021-Aug, Advanced engineering informatics IF:8.0Q1
研究论文 提出了一种基于Lévy黏菌算法和自适应模糊C均值的新型智能模型AFCM-LSMA,用于从胸部X光图像中识别COVID-19感染 结合自适应模糊C均值(AFCM)和改进的基于Lévy分布的黏菌算法(SMA),提出了一种新的优化模型AFCM-LSMA,用于COVID-19的快速诊断 NA 开发一个稳健的模型,从胸部X光图像中提取COVID-19的高级特征,以帮助快速诊断 胸部X光图像 计算机视觉 COVID-19 Lévy黏菌算法,自适应模糊C均值 AFCM-LSMA 图像 NA NA NA NA NA
9340 2025-06-08
Scientific production and thematic breakthroughs in smart learning environments: a bibliometric analysis
2021, Smart learning environments IF:6.7Q1
研究论文 本文通过文献计量学方法分析了智能学习环境领域的研究趋势、学者生产力和主题焦点 提供了智能学习环境领域的全面概览,包括研究热点、主题焦点和未来方向 仅基于Scopus数据库的1081篇同行评议文章,可能未涵盖所有相关研究 分析智能学习环境领域的研究趋势、学者生产力和主题焦点 智能学习环境领域的科学出版物 教育技术 NA 文献计量分析 NA 文本 1081篇同行评议文章 NA NA NA NA
回到顶部