深度学习在生物医药领域的应用

本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新(使用关键词“['deep learning']”过滤),已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!

如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!

Sample Image
添加微信请说明来意
Sample Image
微信赞赏

除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价19.9元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。

当前筛选条件: [分区不过滤] [IF不过滤] [发表日期不过滤] [清除筛选条件]
当前共找到 32372 篇文献,本页显示第 9561 - 9580 篇。
序号 推送日期 文章 类型 简述 创新点 不足 研究目的 研究对象 领域 病种 技术 模型 数据类型 样本量 算法框架 模型架构 性能指标 计算资源
9561 2025-05-31
Performance evaluation of image co-registration methods in photoacoustic mesoscopy of the vasculature
2024-Sep-25, Physics in medicine and biology IF:3.3Q1
research paper 评估光声介观成像中图像配准方法在血管网络纵向表征中的性能 比较了五种开源配准算法在生理和病理组织中的应用,特别是针对肿瘤血管网络的纵向成像配准 配准在光声成像中具有挑战性,主要由于信号复杂性、数据稀疏性、几何伪影、扫描间技术变异性和生物变异性 评估和比较不同图像配准方法在光声介观成像中的性能,以实现血管网络的纵向定量表征 小鼠耳朵和乳腺癌患者来源的异种移植物的3D血管图像 digital pathology breast cancer photoacoustic mesoscopy GAN, LocalNet image murine ears and breast cancer patient-derived xenografts NA NA NA NA
9562 2025-05-31
Artificial intelligence strengthens cervical cancer screening - present and future
2024-09-19, Cancer biology & medicine IF:5.6Q1
综述 本文综述了人工智能在宫颈癌筛查中的应用现状及未来发展 探讨了人工智能在提高宫颈癌筛查准确性、效率和效果方面的潜力,特别是在资源有限的国家 未提及具体AI算法的性能比较或实际应用中的具体障碍 评估人工智能在宫颈癌筛查中的应用及其对实现WHO目标的潜在贡献 宫颈癌筛查,特别是发展中国家的女性 数字病理学 宫颈癌 深度学习 NA 医学图像 NA NA NA NA NA
9563 2025-05-31
Deep learning method with integrated invertible wavelet scattering for improving the quality ofin vivocardiac DTI
2024-Sep-05, Physics in medicine and biology IF:3.3Q1
研究论文 提出一种基于无监督学习的可逆小波散射方法,用于提高心脏扩散张量成像的质量 使用多尺度小波散射提取近乎变换不变的特征,并通过多尺度编码器和解码器网络学习小波散射系数与扩散加权图像之间的关系 未提及具体局限性 提高心脏扩散张量成像的质量 心脏扩散张量成像数据 医学影像处理 心血管疾病 扩散张量成像(DTI), 小波散射(WS) 多尺度编码器和解码器网络 医学影像 三个心脏DTI数据集 NA NA NA NA
9564 2025-05-31
Poised PABP-RNA hubs implement signal-dependent mRNA decay in development
2024-Sep, Nature structural & molecular biology IF:12.5Q1
研究论文 该研究利用深度学习解析了细胞信号通路如何通过改变基因表达实现快速转录组重编程的机制 揭示了LIN28A磷酸化后与PABP-RNA枢纽的相互作用如何选择性地触发mRNA降解,从而促进多能性状态的转变 研究主要聚焦于naive多能性mRNA的降解机制,可能不适用于其他类型的mRNA降解过程 探索信号通路如何通过mRNA降解机制快速重塑转录组 naive多能性mRNA及其降解机制 分子生物学 NA 深度学习 NA 序列数据 NA NA NA NA NA
9565 2025-05-31
Deep learning and direct sequencing of labeled RNA captures transcriptome dynamics
2024-Sep, NAR genomics and bioinformatics IF:4.0Q1
研究论文 介绍了一种名为RNAkinet的深度卷积和循环神经网络,用于检测经过代谢标记的新生RNA分子,并通过纳米孔直接RNA测序区分新生和已有RNA分子 RNAkinet能够直接从纳米孔测序的电信号中处理并区分新生和已有RNA分子,适用于多种细胞类型和生物体,并能量化RNA亚型的半衰期 NA 揭示RNA亚型代谢的动力学参数,促进RNA代谢及其调控元件的研究 RNA亚型 自然语言处理 NA 纳米孔直接RNA测序 深度卷积和循环神经网络 RNA测序数据 NA NA NA NA NA
9566 2025-05-31
Clinical and genetic associations of asymmetric apical and septal left ventricular hypertrophy
2024-Sep, European heart journal. Digital health
research paper 本研究探讨了左心室不对称顶端和间隔肥厚的临床和遗传关联 使用深度学习衍生的表型研究左心室肥厚区域分布的遗传和临床关联,独立于总左心室质量 需要在多民族队列中进行进一步研究 研究左心室不对称肥厚的临床和遗传关联及其对心血管疾病风险的影响 35,268名UK Biobank参与者 machine learning cardiovascular disease 深度学习 NA genetic and clinical data 35,268名UK Biobank参与者 NA NA NA NA
9567 2025-05-31
Coronary Artery Stenosis and High-Risk Plaque Assessed With an Unsupervised Fully Automated Deep Learning Technique
2024-Sep, JACC. Advances
research paper 开发并验证了一种全自动深度学习系统,用于在冠状动脉CT血管造影(CCTA)上评估狭窄程度和高风险斑块(HRP) 提出了一种全自动、无监督的深度学习系统,能够快速评估冠状动脉狭窄程度和HRP,无需专业训练 研究样本量有限,且仅在特定患者群体中进行了验证 开发一种自动化工具,以提高CCTA在评估冠状动脉狭窄和HRP中的效率和准确性 冠状动脉狭窄和高风险斑块(HRP) digital pathology cardiovascular disease deep learning unsupervised deep learning image 570名患者用于训练,769名患者(3,012条血管)用于狭窄评估,45名患者(325条血管)用于HRP评估 NA NA NA NA
9568 2025-05-31
AlphaFold2 Reveals Structural Patterns of Seasonal Haplotype Diversification in SARS-CoV-2 Nucleocapsid Protein Variants
2024-08-25, Viruses
研究论文 利用AlphaFold2揭示SARS-CoV-2核衣壳蛋白变体的季节性单倍型多样化结构模式 首次将AlphaFold2应用于SARS-CoV-2核衣壳蛋白变体的结构模式分析,揭示了内在无序区域在病毒进化中的重要性 研究依赖于计算模型预测的蛋白质结构,而非实验验证的实际结构 探究SARS-CoV-2变体的起源和进化机制 SARS-CoV-2核衣壳蛋白(N蛋白)的22种单倍型 计算生物学 COVID-19 AlphaFold2, 从头计算方法, 数据挖掘 AlphaFold2 蛋白质序列和结构数据 22种单倍型(来自GISAID数据库截至2023年7月23日的数据) NA NA NA NA
9569 2025-05-31
Accurate prediction of protein function using statistics-informed graph networks
2024-Aug-04, Nature communications IF:14.7Q1
研究论文 提出了一种利用统计信息图网络仅从蛋白质序列预测蛋白质功能的方法 该方法无需结构信息即可预测蛋白质功能,并通过进化特征量化评估执行特定功能的残基重要性 NA 预测蛋白质功能以支持医学、生物技术和药物开发领域的研究 蛋白质序列 生物信息学 NA 统计信息图网络 图网络 序列数据 超过2亿个未表征的蛋白质 NA NA NA NA
9570 2025-05-31
Unsupervised representation learning on high-dimensional clinical data improves genomic discovery and prediction
2024-Aug, Nature genetics IF:31.7Q1
research paper 介绍了一种名为REGLE的无监督深度学习模型,用于发现高维临床数据(HDCD)与遗传变异之间的关联 REGLE利用变分自编码器计算HDCD的非线性解缠结嵌入,这些嵌入作为全基因组关联研究(GWAS)的输入,能够发现现有专家定义特征未捕获的特征,并在标记数据极少的数据集中构建准确的疾病特异性多基因风险评分(PRSs) NA 改进高维临床数据的遗传发现和疾病预测 高维临床数据(HDCD) machine learning respiratory and circulatory diseases variational autoencoders, GWAS variational autoencoders clinical data biobank-scale datasets NA NA NA NA
9571 2025-05-31
Quantifying social roles in multi-animal videos using subject-aware deep-learning
2024-Jul-10, bioRxiv : the preprint server for biology
研究论文 介绍了一种基于深度学习的系统LabGym2,用于识别和量化多动物群体中的社会角色 采用主体感知方法,评估群体中每个个体的行为状态,同时考虑其社会和周围环境 NA 开发自动化工具以分析多动物群体中自由移动个体的社会角色 多动物群体中的个体 计算机视觉 NA 深度学习 NA 视频 多种物种和实验,包括自由移动昆虫和野外灵长类动物的社会互动 NA NA NA NA
9572 2025-05-31
Dynamic risk stratification of worsening heart failure using a deep learning-enabled implanted ambulatory single-lead electrocardiogram
2024-Jul, European heart journal. Digital health
研究论文 该研究开发了一种基于深度学习的动态风险分层方法,利用植入式单导联动态心电图监测心力衰竭恶化的风险 首次将植入式循环记录器的动态心电图数据与深度学习算法结合,用于心力衰竭恶化的动态风险分层 研究仅基于回顾性数据,需要前瞻性研究验证 开发心力衰竭恶化的早期预警系统 心力衰竭患者 数字病理学 心血管疾病 动态心电图监测 CNN 心电图数据 2247名患者(训练集),909名患者(验证集) NA NA NA NA
9573 2025-05-31
CrysFormer: Protein structure determination via Patterson maps, deep learning, and partial structure attention
2024-Jul, Structural dynamics (Melville, N.Y.)
研究论文 提出了一种基于Transformer的模型CrysFormer,利用实验蛋白质晶体学数据和部分结构信息计算蛋白质的电子密度图 首次提出直接利用实验蛋白质晶体学数据和部分结构信息的Transformer模型,绕过晶体学相位问题 仅在合成数据集上进行了验证,未在真实复杂蛋白质结构上测试 解决蛋白质原子级结构确定的长期挑战 蛋白质晶体结构 计算生物学 NA X射线晶体学 Transformer Patterson图、蛋白质序列信息 两个合成数据集(一个每单位细胞含2个残基,另一个含15个残基) NA NA NA NA
9574 2025-05-31
ROBUST QUANTIFICATION OF PERCENT EMPHYSEMA ON CT VIA DOMAIN ATTENTION: THE MULTI-ETHNIC STUDY OF ATHEROSCLEROSIS (MESA) LUNG STUDY
2024-May, Proceedings. IEEE International Symposium on Biomedical Imaging
研究论文 本文提出了一种基于域注意力的深度学习框架,用于在CT扫描中稳健量化肺气肿,解决了不同扫描仪类型带来的域偏移问题 设计了一种新颖的域注意力块,将图像视觉特征与定量扫描仪先验融合,显著提高了结果 需要进一步验证在大规模临床扫描中的适用性 开发一种稳健的肺气肿量化方法,适用于不同CT扫描仪的大规模研究 CT扫描图像中的肺气肿量化 数字病理 肺气肿 CT扫描 UNet, 域注意力块 CT图像 NA NA NA NA NA
9575 2025-05-31
UNSUPERVISED AIRWAY TREE CLUSTERING WITH DEEP LEARNING: THE MULTI-ETHNIC STUDY OF ATHEROSCLEROSIS (MESA) LUNG STUDY
2024-May, Proceedings. IEEE International Symposium on Biomedical Imaging
research paper 该研究提出了一种无监督深度学习流程,用于从3D气道分割投影中提取特征并进行聚类,以识别与疾病风险相关的气道亚型 首次使用无监督深度学习方法直接从3D气道分割投影中提取特征并进行聚类,识别出四种可重复且临床意义不同的气道亚型 对CT分割气道树变异的定量表征仍不完整,对这些变异的临床和发展影响的理解也有限 开发一种方法来定量表征CT扫描中气道树的变异,并探索其与疾病风险的关联 人类气道树 digital pathology COPD deep learning unsupervised deep-learning pipeline 3D CT scans MESA Lung CT cohort NA NA NA NA
9576 2025-05-31
Weakly supervised learning for subcutaneous edema segmentation of abdominal CT using pseudo-labels and multi-stage nnU-Nets
2024-Feb, Proceedings of SPIE--the International Society for Optical Engineering
research paper 该论文提出了一种弱监督学习方法,用于腹部CT扫描中皮下水肿的自动分割,以提高水肿的量化准确性 使用强度先验生成的水肿伪标签和肌肉、皮下及内脏脂肪组织的伪标签进行上下文学习,结合多阶段nnU-Nets,显著降低了分割误差 依赖于伪标签的质量,可能受到初始分割误差的影响 开发一种非侵入性方法,通过腹部CT扫描自动分割水肿,以监测肾、肝或心力衰竭等疾病的进展 腹部CT扫描中的皮下水肿 digital pathology kidney, liver or heart failure weakly supervised learning, nnU-Nets nnU-Nets 3D CT images NA NA NA NA NA
9577 2025-05-31
DeepDate: A deep fusion model based on whale optimization and artificial neural network for Arabian date classification
2024, PloS one IF:2.9Q1
研究论文 提出了一种基于鲸鱼优化算法和人工神经网络的深度融合模型DeepDate,用于阿拉伯椰枣分类 结合鲸鱼优化算法和人工神经网络,提高了椰枣分类的准确性和效率 未提及模型在小规模生产者中的实际应用效果 提高椰枣分类的准确性和效率 阿拉伯椰枣(Barhi, Khalas, Meneifi, Naboot Saif, Sullaj) 计算机视觉 NA 深度学习算法 人工神经网络(ANN) 图像 五类椰枣图像(具体数量未提及) NA NA NA NA
9578 2025-05-31
Predicting recovery following stroke: Deep learning, multimodal data and feature selection using explainable AI
2024, NeuroImage. Clinical
research paper 该研究利用深度学习和多模态数据结合可解释AI技术,预测中风后的恢复情况 提出了一种新颖的方法,通过训练CNN在结合MRI提取的ROIs和表格数据的符号表示的图像上,以提高分类准确性 数据集在机器学习标准下相对较小,可能影响模型的泛化能力 预测中风后症状及其对康复的反应,以提高分类准确性 758名英语中风幸存者,参与PLORAS研究 machine learning cardiovascular disease MRI扫描和表格数据结合 CNN, 2D Residual Neural Network (ResNet), 3D CNN image, tabular data 758名中风幸存者,其中286名初始有中度或重度失语症 NA NA NA NA
9579 2025-05-31
Large-Kernel Attention for 3D Medical Image Segmentation
2024, Cognitive computation IF:4.3Q1
research paper 提出了一种新型3D大核注意力模块,用于提高多器官和肿瘤在3D医学图像中的分割准确性 结合了生物启发的自注意力和卷积的优点,包括局部上下文信息、长距离依赖和通道适应性,同时通过分解大核卷积优化计算成本 未明确提及具体限制,但可能包括对特定类型医学图像的适用性或计算资源需求 实现准确的3D医学图像分割,特别是多器官和肿瘤的分割 MRI和CT扫描中的多器官和肿瘤 digital pathology cancer deep learning U-Net with 3D LK attention module 3D medical images (MRI, CT) CT-ORG and BraTS 2020 datasets NA NA NA NA
9580 2025-05-31
Interpolation-split: a data-centric deep learning approach with big interpolated data to boost airway segmentation performance
2024, Journal of big data IF:8.6Q1
研究论文 提出了一种基于数据中心的深度学习方法Interpolation-Split,通过大数据插值提升气道分割性能 利用插值和图像分割技术提高数据质量和实用性,并采用集成学习策略整合不同尺度的气道分割结果 未提及具体限制 提升气道树的分割性能,以支持慢性呼吸系统疾病的诊断和特征分析 气道树的分割 数字病理 慢性呼吸系统疾病 深度学习,插值技术,图像分割 nnU-Net, modified dilated U-Net 医学图像 未提及具体样本量 NA NA NA NA
回到顶部