深度学习在生物医药领域中的应用

本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!

如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!

Sample Image
添加微信请说明来意
Sample Image
微信赞赏

除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。

当前筛选条件: [分区不过滤] [IF不过滤] [发表日期不过滤] [清除筛选条件]
当前共找到 25647 篇文献,本页显示第 941 - 960 篇。
序号 推送日期 文章 类型 简述 创新点 不足 研究目的 研究对象 领域 病种 技术 模型 数据类型 样本量
941 2025-05-23
Grading of Foveal Hypoplasia Using Deep Learning on Retinal Fundus Images
2025-May-01, Translational vision science & technology IF:2.6Q2
research paper 本研究开发并评估了一种基于深度学习的模型,用于通过视网膜眼底图像对中心凹发育不全进行分级 使用深度学习模型对中心凹发育不全进行二分类和六等级分类,其表现优于资深和初级临床医生的评估 研究为回顾性研究,可能受到数据收集时间跨度和样本量的限制 开发并评估一种深度学习模型,用于自动分级中心凹发育不全 303名中心凹发育障碍患者的605张视网膜眼底图像 digital pathology 眼科疾病 光学相干断层扫描 EfficientNet_b1 image 605张视网膜眼底图像(来自303名患者)
942 2025-05-23
Deep Learning-Powered Whole Slide Image Analysis in Cancer Pathology
2025-Apr-28, Laboratory investigation; a journal of technical methods and pathology
综述 本文综述了深度学习在全幻灯片图像(WSI)分析中的应用及其在癌症病理学中的潜力 整合深度学习模型与WSIs,探索和挖掘超出病理学家视觉感知的形态学特征,以自动化临床诊断、评估组织病理学分级、预测临床结果及发现新的形态学生物标志物 讨论了将基于深度学习的数字病理学转化为临床实践的机遇与挑战,但未具体提及技术实施的具体障碍 提高组织病理学评估的精确性和效率,支持癌症患者的个性化治疗 全幻灯片图像(WSI)及其在癌症病理学中的应用 数字病理学 癌症 全幻灯片成像技术 CNN, Graph Convolutional Network, Transformer 图像 NA
943 2025-05-23
"Amide - amine + alcohol = carboxylic acid." chemical reactions as linear algebraic analogies in graph neural networks
2025-Apr-23, Chemical science IF:7.6Q1
研究论文 本文探讨了图神经网络在化学计算数据中的应用,揭示了原子嵌入的算术性质如何代表有效的化学反应公式 展示了原子嵌入在化学图神经网络中表现出的算术性质,类似于自然语言处理中的词嵌入类比,为化学反应的表示提供了解释性 NA 揭示图神经网络在化学计算中的学习机制,解释原子嵌入的算术性质如何对应化学反应 化学计算数据中的原子嵌入和化学反应 机器学习 NA 图神经网络 GNN 化学计算数据 NA
944 2025-05-23
Estimating hair density with XGBoost
2025-Apr, International journal of cosmetic science IF:2.7Q2
研究论文 本研究探索使用XGBoost算法进行头发密度估计,旨在开发一种更准确和通用的方法 采用XGBoost算法进行头发密度估计,相比之前的方法在测试集上达到了95.3%的准确率,显著优于其他研究 研究仅使用了895张头皮图像,样本量可能不足以覆盖所有临床情况 开发一种更准确和通用的头发密度估计方法 头皮图像 计算机视觉 NA 图像处理 XGBoost 图像 895张头皮图像(745张用于训练,150张用于测试)
945 2025-05-23
Generalizable Magnetic Resonance Imaging-based Nasopharyngeal Carcinoma Delineation: Bridging Gaps Across Multiple Centers and Raters With Active Learning
2025-Apr-01, International journal of radiation oncology, biology, physics
研究论文 开发了一种利用主动学习和无源域适应的深度学习方法,用于鼻咽癌(NPC)大体肿瘤体积的勾画,以解决在多中心和多位评估者环境中部署分割模型时的变异性和不准确性问题 结合主动学习和无源域适应技术,显著减少了对目标域标记样本的需求,同时在多中心和多位评估者环境中实现了与全监督模型相当的性能 虽然减少了标记样本的需求,但仍需要一定量的目标域标记数据(20%)进行适应 开发一种能够准确且可推广的鼻咽癌大体肿瘤体积分割方法,以克服多中心和多位评估者环境中的变异性和不准确性 鼻咽癌患者的磁共振成像(MRI)扫描 数字病理 鼻咽癌 主动学习,无源域适应 U-Net MRI图像 1057例来自5家医院的鼻咽癌患者MRI扫描,以及另外170例由4位独立专家标注的患者数据
946 2025-05-23
Primary angle-closed diseases recognition through artificial intelligence-based anterior segment-optical coherence tomography imaging
2025-Apr, Graefe's archive for clinical and experimental ophthalmology = Albrecht von Graefes Archiv fur klinische und experimentelle Ophthalmologie
研究论文 本研究利用人工智能技术对前段光学相干断层扫描(AS-OCT)图像进行深度学习分类,自动分析AS-OCT图像的角结构并分类前房角,以提高AS-OCT图像分析的效率 开发了一种基于深度学习的AS-OCT图像自动前房角分析软件,并应用迁移学习于ResNet-50架构,实现了高效的前房角闭合检测 样本主要来自上海社区的老年人青光眼筛查项目,可能限制了结果的普适性 提高AS-OCT图像分析的效率,自动化前房角的临床评估 AS-OCT图像 计算机视觉 青光眼 光学相干断层扫描(OCT) ResNet-50 图像 687名参与者的94895张AS-OCT图像
947 2025-05-23
Enhancing diabetic retinopathy and macular edema detection through multi scale feature fusion using deep learning model
2025-Apr, Graefe's archive for clinical and experimental ophthalmology = Albrecht von Graefes Archiv fur klinische und experimentelle Ophthalmologie
research paper 该研究通过深度学习模型的多尺度特征融合,提高了糖尿病视网膜病变和黄斑水肿的自动检测准确率 采用独特的融合技术结合高级语义输入和低级纹理特征,提升了诊断准确性 研究仅使用了MESSIDOR数据集,可能在其他数据集上的泛化能力未经验证 提高糖尿病视网膜病变和黄斑水肿的早期自动检测准确率 糖尿病视网膜病变和黄斑水肿的视网膜图像 digital pathology diabetic retinopathy deep learning CNN image MESSIDOR数据集中的视网膜图像
948 2025-05-23
Optimizing visible retinal area in pediatric ultra-widefield fundus imaging: The effectiveness of mydriasis and eyelid lifting
2025-Apr, Photodiagnosis and photodynamic therapy IF:3.1Q2
研究论文 本研究探讨了在儿童超广角眼底成像中,通过瞳孔扩大和眼睑提升来最大化可见视网膜区域(VRA)的效果 首次在儿童群体中量化评估了瞳孔扩大和眼睑提升对超广角眼底成像可见视网膜区域的协同增效作用 样本量较小(53名儿童),且为单中心研究 优化儿童超广角眼底成像技术以提高周边视网膜病变检出率 53名儿童(106只眼)的超广角眼底图像 数字病理 视网膜病变 超广角Optos成像系统(Daytona P200T) 基于深度学习的图像分割工具 图像 53名儿童(106只眼)
949 2025-05-23
LEyes: A lightweight framework for deep learning-based eye tracking using synthetic eye images
2025-Mar-31, Behavior research methods IF:4.6Q1
研究论文 介绍了一种名为LEyes的轻量级框架,用于通过合成眼图进行基于深度学习的眼动追踪 LEyes框架采用简单的合成图像生成器而非传统的光照真实方法,提高了训练神经网络的效率,并适应任何记录设备 合成图像可能无法完全捕捉真实眼图的复杂性和多样性 克服眼动追踪技术中训练数据不足和模型泛化能力差的问题 眼动追踪中的瞳孔和角膜反射检测 计算机视觉 NA 深度学习 神经网络 图像 多样化的数据集
950 2025-05-23
Deep learning-driven pulmonary artery and vein segmentation reveals demography-associated vasculature anatomical differences
2025-Mar-06, Nature communications IF:14.7Q1
research paper 提出了一种名为HiPaS的深度学习方法,用于在非对比CT和CTPA上实现肺动脉和静脉的精确分割 HiPaS方法首次在非对比CT上实现了肺动脉和静脉的精确分割,无需使用对比剂,且性能不劣于传统CTPA方法 NA 开发一种无需对比剂的肺动脉和静脉分割方法,用于疾病诊断和手术规划 肺动脉和静脉的解剖结构 digital pathology lung cancer deep learning CNN CT图像 1073个CT体积(训练集)和11,784名参与者(大规模分析)
951 2025-05-23
EfficientNet-resDDSC: A Hybrid Deep Learning Model Integrating Residual Blocks and Dilated Convolutions for Inferring Gene Causality in Single-Cell Data
2025-Mar, Interdisciplinary sciences, computational life sciences
研究论文 提出了一种名为EfficientNet-resDDSC的混合深度学习模型,用于从单细胞数据中推断基因间的因果关系 结合了残差块和扩张卷积,增强了模型在初级阶段的低层次特征提取能力,并通过深度可分离卷积和扩张卷积在不增加计算量的情况下扩大了模型的感受野 未提及具体局限性 构建基因调控网络(GRNs)以揭示基因间的因果关系 单细胞RNA测序(scRNA-seq)数据 机器学习 乳腺癌 scRNA-seq EfficientNet-resDDSC(结合了残差块和扩张卷积的深度学习模型) 单细胞RNA测序数据 四个数据集
952 2025-05-23
Preoperative diagnosis of meningioma sinus invasion based on MRI radiomics and deep learning: a multicenter study
2025-Feb-28, Cancer imaging : the official publication of the International Cancer Imaging Society IF:3.5Q1
研究论文 本研究通过结合放射组学和深度学习特征构建融合模型,用于脑膜瘤窦侵犯的术前精确诊断 首次构建了结合放射组学和多种深度学习特征(VGG、ResNet、DenseNet)的融合模型,并在多中心数据集中验证了其优越的诊断性能 研究为回顾性设计,需要前瞻性研究进一步验证模型的临床适用性 开发脑膜瘤窦侵犯的术前精确诊断方法 601例经手术病理证实的脑膜瘤患者 数字病理 脑膜瘤 MRI影像分析 随机森林(RF)、VGG、ResNet、DenseNet 医学影像 601例患者(训练集、内部验证集和独立外部验证集)
953 2025-05-23
Endoscapes, a critical view of safety and surgical scene segmentation dataset for laparoscopic cholecystectomy
2025-Feb-25, Scientific data IF:5.8Q1
research paper 介绍Endoscapes2023数据集,用于腹腔镜胆囊切除术中的安全关键视图和手术场景分割 发布了一个包含201个腹腔镜胆囊切除术视频的数据集,带有手术器械和肝胆囊解剖的分割掩码,以及由三位训练有素的外科医生根据公开协议评估的安全关键视图标准 NA 支持深度学习模型在腹腔镜胆囊切除术中的视觉任务,如评估安全关键视图,以提高手术安全性和效率 腹腔镜胆囊切除术视频 digital pathology NA deep learning NA video 201个腹腔镜胆囊切除术视频
954 2025-05-23
Bone Age Estimation of Chinese Han Adolescents's and Children's Elbow Joint X-rays Based on Multiple Deep Convolutional Neural Network Models
2025-Feb-25, Fa yi xue za zhi
research paper 该研究探讨了基于深度学习的中国汉族青少年和儿童肘关节X光片骨龄自动估计模型及其性能评估 采用三种实验方案进行骨龄估计,并比较不同分割和回归模型的性能,最终推荐使用UNet++进行分割和DenseNet121进行回归 研究样本主要来自中国东部、南部、中部和西北地区,可能无法完全代表其他地区的人群 开发一种自动骨龄估计模型,用于中国汉族青少年和儿童的肘关节X光片 中国汉族6.00至<16.00岁的青少年和儿童的肘关节X光片 digital pathology NA X-ray imaging U-Net, UNet++, TransUNet, VGG16, VGG19, InceptionV2, InceptionV3, ResNet34, ResNet50, ResNet101, DenseNet121 image 943例肘关节X光片(517名男性和426名女性),外加104例外部测试集
955 2025-05-23
Advancing structure modeling from cryo-EM maps with deep learning
2025-02-07, Biochemical Society transactions IF:3.8Q2
研究论文 本文讨论了利用深度学习从冷冻电镜图中推进结构建模的进展 强调了AI驱动的方法在冷冻电镜结构建模中的变革性作用 未明确提及具体的研究限制 探讨冷冻电镜密度图中自动结构建模的演变和现状 冷冻电镜密度图中的生物分子结构 结构生物学 NA 冷冻电镜(cryo-EM), 深度学习 深度学习 冷冻电镜密度图 NA
956 2025-05-23
A review of convolutional neural network based methods for medical image classification
2025-Feb, Computers in biology and medicine IF:7.0Q1
review 本文系统回顾了基于CNN的医学图像分类方法,分析了149篇最新重要论文,并深入探讨了相关技术及其在提高分类准确性和效率中的作用 系统性地组织和分析了CNN在医学图像分类领域的发展、主要技术及公共数据集,并指出了未来研究方向 尽管CNN在医学图像分类中表现出色,但临床应用仍面临困难 回顾和分析基于CNN的医学图像分类方法,促进深度学习在临床实践和智能医疗系统中的成功整合 医学图像分类方法 digital pathology NA CNN CNN image 149篇论文
957 2025-05-23
Real-time intraoperative ultrasound registration for accurate surgical navigation in patients with pelvic malignancies
2025-Feb, International journal of computer assisted radiology and surgery IF:2.3Q2
研究论文 本研究开发并评估了几种实时术中超声(iUS)配准方法,用于盆腔恶性肿瘤手术导航 开发了实时深度学习骨骼和动脉分割的2D超声配准方法,提高了手术导航的准确性和效率 iUS的用户依赖性较强,需要直观的软件以实现最佳临床实施 提高盆腔恶性肿瘤手术导航的准确性和效率 盆腔恶性肿瘤患者 数字病理 盆腔恶性肿瘤 实时术中超声(iUS) 深度学习 超声图像 30名患者
958 2025-05-23
Enhancing Domain Diversity of Transfer Learning-Based SSVEP-BCIs by the Reconstruction of Channel Correlation
2025-02, IEEE transactions on bio-medical engineering
研究论文 本研究提出了一种名为通道相关性重建(RCC)的数据增强方法,用于优化基于稳态视觉诱发电位(SSVEP)的脑机接口(BCI)中迁移学习的源域数据利用 通过概率混合源域协方差矩阵的特征向量矩阵来重建训练样本,操纵通道相关性以隐式创建新的合成域,从而增加源域多样性 NA 提高SSVEP-BCI系统中迁移学习的性能 稳态视觉诱发电位(SSVEP)脑机接口系统 脑机接口 NA 迁移学习(预训练和微调) 深度学习模型 脑电信号数据 NA
959 2025-05-23
A Deep and Interpretable Learning Approach for Long-Term ECG Clinical Noise Classification
2025-01, IEEE transactions on bio-medical engineering
research paper 本研究探讨了深度学习模型在长期监测心电图中临床噪声分类的应用,并设计了可解释的架构 结合深度学习和可解释系统,提高了临床噪声分类的性能,并为决策过程提供定性解释 需避免患者内过拟合,且性能仍有提升空间 提高长期监测心电图中临床噪声分类的准确性和可解释性 长期监测心电图中的临床噪声 machine learning cardiovascular disease 深度学习 CNN, Autoencoder ECG信号 NA
960 2025-05-23
Hybrid deep learning model for accurate and efficient android malware detection using DBN-GRU
2025, PloS one IF:2.9Q1
research paper 本研究提出了一种混合深度学习模型(DBN-GRU),用于提高Android恶意软件检测的准确性和效率 结合了Deep Belief Networks(DBN)进行静态分析和Gated Recurrent Units(GRU)进行动态行为建模,以增强恶意软件检测能力 未提及模型在未知或新型恶意软件变种上的表现 提高Android恶意软件检测的准确性和效率 Android应用程序(APKs) machine learning NA DBN, GRU DBN-GRU 静态特征(权限、API调用、意图过滤器)和动态特征(系统调用、网络活动、进程间通信) 129,013个应用程序(5,560个恶意软件和123,453个良性应用)
回到顶部