本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!
除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
941 | 2025-06-15 |
Experimental demonstration of integrated encryption and communication over optical fiber
2025-Jul, National science review
IF:16.3Q1
DOI:10.1093/nsr/nwaf112
PMID:40511367
|
研究论文 | 本文提出了一种集成加密与通信(IEAC)框架,旨在通过端到端深度学习优化加密过程和传输质量 | 提出了一种集成加密与通信(IEAC)框架,通过端到端深度学习训练随机数选择的几何星座成形方案,同时优化加密过程和传输质量,实现了单通道1 Tb/s的传输速率 | 未提及具体局限性 | 解决大数据和AI时代下光纤通信中的安全与高容量传输问题 | 光纤通信系统 | 通信技术 | NA | 深度学习,波长分复用(WDM) | 深度学习模型 | 光信号 | 1200公里光纤链路,26通道,3.9 THz带宽的全C波段WDM配置 |
942 | 2025-06-15 |
Deep learning for fetal inflammatory response diagnosis in the umbilical cord
2025-Jun-26, Placenta
IF:3.0Q2
DOI:10.1016/j.placenta.2025.04.013
PMID:40294507
|
研究论文 | 本研究利用深度学习技术从脐带全切片图像中诊断胎儿炎症反应 | 首次应用基于注意力的全切片学习模型对脐带组织进行胎儿炎症反应分类,并比较了不同预训练模型的性能 | 研究仅基于单一医疗中心的样本,且未来需要验证模型在识别系统性炎症反应高风险婴儿方面的效用 | 开发辅助病理学家诊断胎儿炎症反应的深度学习模型 | 脐带组织全切片图像 | 数字病理学 | 新生儿败血症/胎儿炎症反应综合征 | 全切片图像分析 | 注意力机制模型/ConvNeXtXLarge/UNI/集成模型 | 病理图像 | 4100张脐带组织H&E染色切片 |
943 | 2025-06-15 |
Implementation of 400 Gbps quantum noise stream cipher encryption for 1520 km fiber transmission using end-to-end deep learning
2025-Jun-15, Optics letters
IF:3.1Q2
DOI:10.1364/OL.553692
PMID:40512879
|
研究论文 | 本文提出了一种端到端深度学习的量子噪声流密码加密方案,实现了400 Gbps的量子噪声流密码加密,并在1520公里的光纤传输中进行了验证 | 将深度学习引入量子噪声流密码(QNSC),提出端到端量子噪声流密码(E2E-QNSC)方案,将16QAM加密为E2E-65536QAM/QNSC | NA | 提升光纤通信骨干网的物理层安全性,满足400G光纤骨干网的速率需求 | 光纤通信骨干网的安全传输 | 机器学习 | NA | 深度学习 | NA | 光纤传输数据 | NA |
944 | 2025-06-15 |
Self-adaptive hybrid data-model optimization for secure end-to-end radio-over-fiber transmission
2025-Jun-15, Optics letters
IF:3.1Q2
DOI:10.1364/OL.566422
PMID:40512893
|
研究论文 | 提出了一种新颖的自适应安全端到端传输方法,用于光纤无线电(RoF)系统 | 系统集成了深度学习和传统模型,通过端到端优化将加密功能嵌入调制(TransNN)和解调(ReceivNN)中,训练阶段的随机化和噪声扰动确保了不同训练轮次间调制与解调模型的不兼容性 | 数值模拟结果未在实际系统中验证 | 为RoF系统提供安全且自适应的传输解决方案 | 光纤无线电(RoF)系统 | 机器学习 | NA | 深度学习 | TransNN, ReceivNN | 信号数据 | NA |
945 | 2025-06-15 |
RF-photonic deep learning processor with Shannon-limited data movement
2025-Jun-13, Science advances
IF:11.7Q1
DOI:10.1126/sciadv.adt3558
PMID:40498817
|
research paper | 介绍了一种名为MAFT-ONN的新型光学神经网络硬件加速器,用于处理原始射频信号并进行深度学习计算 | 提出了MAFT-ONN,一种能够在原始射频信号上实现全模拟深度学习计算的硬件加速器,具有高准确率和可扩展性 | 未提及具体局限性 | 开发新型计算范式以满足未来高级通信(如6G)的需求 | 射频信号和光学神经网络 | machine learning | NA | 光学神经网络(ONN) | MAFT-ONN | 射频信号 | MNIST数据集 |
946 | 2025-06-15 |
Data Fusion for Integrative Species Identification Using Deep Learning
2025-Jun-13, Systematic biology
IF:6.1Q1
DOI:10.1093/sysbio/syaf026
PMID:40512613
|
research paper | 该研究提出了一种融合分子和图像数据的深度学习方案,用于细粒度物种识别 | 首次系统地评估和比较了不同的DNA数据预处理和编码方法,并提出了三种融合分子和视觉特征的策略 | 研究仅针对四个真核生物数据集进行了测试,可能无法推广到所有物种 | 通过融合分子和图像数据提高物种识别的准确性 | 四个真核生物数据集(包括两个植物科和两个动物科) | machine learning | NA | DNA测序和图像分析 | artificial neural networks | 分子数据和图像数据 | 四个真核生物数据集(Asteraceae, Poaceae, Lycaenidae, Coccinellidae) |
947 | 2025-06-15 |
Enhancing Free-hand 3D Photoacoustic and Ultrasound Reconstruction using Deep Learning
2025-Jun-13, IEEE transactions on medical imaging
IF:8.9Q1
DOI:10.1109/TMI.2025.3579454
PMID:40512645
|
research paper | 本研究介绍了一种基于运动的深度学习网络(MoGLo-Net),用于增强手持式光声和超声(PAUS)成像的3D重建 | 通过创新的自注意力机制适应,MoGLo-Net能够有效利用关键区域(如完全发育的散斑区域或高回声组织区域)来准确估计运动参数,从而提升3D重建的精度 | 研究未提及对极端运动或低质量图像的鲁棒性测试 | 提升手持式光声和超声成像的3D重建质量 | 光声和超声成像的3D重建 | medical imaging | NA | 深度学习,自注意力机制,光声成像,超声成像 | MoGLo-Net | 3D图像 | 未明确提及具体样本数量 |
948 | 2025-06-15 |
Integrating Deep Learning Derived Morphological Traits and Molecular Data for Total-Evidence Phylogenetics: Lessons from Digitized Collections
2025-Jun-12, Systematic biology
IF:6.1Q1
DOI:10.1093/sysbio/syae072
PMID:39826140
|
研究论文 | 本文探讨了将深度学习衍生的形态特征与分子数据相结合,用于全证据系统发育分析的方法及其挑战 | 首次将深度学习衍生的形态特征与分子数据结合用于全证据系统发育分析,并比较了不同数据集划分和损失函数的效果 | 深度学习衍生的形态特征单独使用时表现不如分子分析,且存在系统发育信号强度和数据获取资源需求方面的挑战 | 探索深度学习衍生的形态特征与分子数据结合在全证据系统发育分析中的应用效果 | 针插昆虫标本的图像数据(以隐翅虫为例) | 计算机视觉 | NA | 深度学习 | 深度度量学习模型 | 图像和分子数据 | 隐翅虫图像数据集 |
949 | 2025-06-15 |
Study on a Traditional Chinese Medicine constitution recognition model using tongue image characteristics and deep learning: a prospective dual-center investigation
2025-Jun-12, Chinese medicine
IF:5.3Q1
DOI:10.1186/s13020-025-01126-w
PMID:40506765
|
研究论文 | 本研究开发了一种基于舌象特征和深度学习的传统中医体质识别模型 | 结合传统舌象特征和深度学习特征,构建了融合特征的智能体质识别模型,克服了传统方法的局限性 | 样本仅来自两个医疗中心,可能存在选择偏倚 | 开发定量分析的中医体质识别模型 | 接受中医体质评估的参与者 | 数字病理 | 中医体质分类 | LASSO回归、随机森林(RF)、多层感知机(MLP) | MLP | 图像 | 1374名参与者的舌象和体质数据 |
950 | 2025-06-15 |
Seamless finer-resolution soil moisture from the synergistic merging of the FengYun-3 satellite series
2025-Jun-11, Scientific data
IF:5.8Q1
DOI:10.1038/s41597-025-05263-7
PMID:40500275
|
research paper | 该研究开发了一种从风云系列卫星数据中合并土壤湿度的方法,生成空间分辨率为0.15°的数据集,并利用深度学习插值方法填补缺失数据 | 通过最小化均方误差的合并技术,结合风云系列卫星的上升和下降观测数据,生成更高分辨率的土壤湿度数据集,并使用深度学习进行数据插值 | 研究仅覆盖2011年至2020年的数据,可能无法反映更长时间尺度的变化 | 提供全球卫星土壤湿度观测数据,以解决相关应用中的挑战 | 风云系列卫星(FY-3B、C、D)的被动微波观测数据 | 遥感 | NA | 深度学习插值方法 | NA | 卫星遥感数据 | 2011年至2020年的风云系列卫星数据 |
951 | 2025-06-15 |
Mechanisms of organotropism in breast cancer and predicting metastasis to distant organs using deep learning
2025-Jun-11, Discover oncology
IF:2.8Q2
DOI:10.1007/s12672-025-02905-5
PMID:40500539
|
研究论文 | 本研究探讨了乳腺癌器官趋向性的机制,并利用深度学习预测乳腺癌向远处器官转移 | 结合单细胞RNA测序、批量RNA测序、ChIP-seq数据和深度学习技术,开发了一个深度神经网络模型来识别器官特异性转移基因 | 研究仅关注了乳腺癌向骨、脑、肝和肺四种器官的转移,未涵盖其他可能的转移部位 | 探索乳腺癌器官趋向性的分子机制,并预测其向特定器官转移的可能性 | 乳腺癌及其向骨、脑、肝和肺的转移 | 数字病理学 | 乳腺癌 | 单细胞RNA测序、批量RNA测序、ChIP-seq | DNN | 基因组数据 | NA |
952 | 2025-06-15 |
Enhancing differentiation between unipolar and bipolar depression through integration of machine learning and electroencephalogram analysis
2025-Jun-10, Journal of affective disorders
IF:4.9Q1
DOI:10.1016/j.jad.2025.119599
PMID:40505986
|
研究论文 | 本研究通过整合机器学习和脑电图分析,提高了单相抑郁和双相抑郁的区分能力 | 首次将深度学习模型与EEG数据和临床特征结合,用于区分单相抑郁和双相抑郁 | 模型可解释性有待提高,未来需要整合多模态数据和开发更先进的特征提取技术 | 提高单相抑郁和双相抑郁的区分准确性 | 370名被诊断为单相抑郁或双相抑郁的患者 | 机器学习 | 抑郁症 | EEG分析 | SVM, Random Forest, FCNN, RNN, LSTM, Transformers | EEG数据和临床特征 | 370名患者 |
953 | 2025-06-15 |
Tailoring task arithmetic to address bias in models trained on multi-institutional datasets
2025-Jun-08, Journal of biomedical informatics
IF:4.0Q2
DOI:10.1016/j.jbi.2025.104858
PMID:40494422
|
研究论文 | 该研究提出两种模型无关的方法TAPER和DAPPER,通过任务向量算术减少多机构数据集训练模型中的来源混淆偏差 | 首次将任务向量算术方法应用于解决NLP模型中的来源混淆偏差问题,并提出两种新方法TAPER和DAPPER | 仅在三个数据集上进行了评估,需要更多验证 | 解决多机构数据集训练深度学习模型时产生的来源混淆偏差问题 | RoBERTa和Llama-2模型 | 自然语言处理 | NA | 任务向量算术 | RoBERTa, Llama-2 | 文本 | 三个数据集 |
954 | 2025-06-15 |
Screening of bioactive compounds and deep learning-driven quality control of Angong Niuhuang pills
2025-Jun-07, Journal of ethnopharmacology
IF:4.8Q1
DOI:10.1016/j.jep.2025.120095
PMID:40490229
|
研究论文 | 本研究通过筛选安宫牛黄丸中的生物活性化合物,并利用深度学习技术实现其质量控制 | 结合LC-MS、网络药理学和PLS分析筛选活性化合物,并采用BiGRU-MAR深度学习模型进行质量控制 | 未提及具体样本量及模型在其他中药复方中的泛化能力 | 建立安宫牛黄丸的科学化、标准化质量控制体系 | 安宫牛黄丸及其活性化合物 | 数字病理学 | 中风 | LC-MS、网络药理学、PLS分析、NIR光谱 | BiGRU-MAR | 光谱数据 | NA |
955 | 2025-06-15 |
Towards prehospital risk stratification using deep learning for ECG interpretation in suspected acute coronary syndrome
2025-Jun-06, BMJ health & care informatics
IF:4.1Q2
DOI:10.1136/bmjhci-2024-101292
PMID:40480678
|
研究论文 | 本研究开发并验证了一种基于卷积神经网络(CNN)的模型,用于疑似非ST段抬高急性冠脉综合征(NSTE-ACS)患者的风险分层,并与现有的院前诊断工具进行比较 | 首次将CNN应用于院前ECG解读,用于NSTE-ACS的风险分层,并展示了AI与临床风险评分结合可提高诊断性能 | 研究人群中心肌梗死患病率较高,可能影响诊断性能的评估 | 开发并验证AI模型用于院前NSTE-ACS的风险分层 | 疑似NSTE-ACS患者 | 数字病理学 | 心血管疾病 | ECG解读 | CNN | ECG数据 | 5645名疑似NSTE-ACS患者(外部验证队列754名) |
956 | 2025-06-15 |
BaSbBS4: a record-high-performance birefringent crystal identified by a target-driven closed-loop strategy
2025-Jun-04, Chemical science
IF:7.6Q1
DOI:10.1039/d5sc01983d
PMID:40510313
|
research paper | 本文开发了一种目标驱动的闭环框架,用于高效发现潜在的双折射材料,并成功识别出一批优异的红外双折射晶体 | 提出了一种结合功能基团和晶体结构筛选、深度学习辅助高通量光学性质计算、针对性实验和机理研究的目标驱动闭环框架 | NA | 探索具有大双折射率和宽带隙的红外双折射材料,以满足高功率光电子应用的需求 | 红外双折射晶体,特别是含有平面[BS]和/或立体化学活性孤对电子(SCALP)基团([SbS], [SnS])的晶体 | 材料科学 | NA | 深度学习辅助高通量光学性质计算 | NA | 晶体结构数据、光学性质数据 | 一批含有[BS]和/或SCALP基团的红外双折射晶体(六种具有巨大双折射率Δ > 1.0,三种同时具有大双折射率Δ > 0.5和宽带隙 > 3.5 eV) |
957 | 2025-06-15 |
Retinal Vessel Geometry and Retinal Abnormalities in Cerebral Autosomal Dominant Arteriopathy With Subcortical Infarcts and Leukoencephalopathy
2025-Jun-02, Translational vision science & technology
IF:2.6Q2
DOI:10.1167/tvst.14.6.17
PMID:40488700
|
研究论文 | 研究CADASIL患者的视网膜血管几何形态和视网膜异常 | 使用基于深度学习模型的自动化视网膜血管几何评估程序,首次系统评估CADASIL患者的视网膜血管几何参数 | 样本量较小(35例患者和35例对照),且为回顾性研究 | 探讨CADASIL患者的视网膜血管几何形态和视网膜异常 | 35例CADASIL患者和35例正常对照 | 数字病理学 | 脑常染色体显性遗传动脉病伴皮质下梗死和白质脑病(CADASIL) | 深度学习 | 深度学习模型 | 图像 | 35例CADASIL患者和35例正常对照 |
958 | 2025-06-15 |
From pixels to patients: the evolution and future of deep learning in cancer diagnostics
2025-Jun, Trends in molecular medicine
IF:12.8Q1
DOI:10.1016/j.molmed.2024.11.009
PMID:39665958
|
评论 | 本文探讨了深度学习在癌症诊断中的演变和未来,从基于像素的图像分析转向更全面、以患者为中心的护理 | 强调了开发能够整合多种数据源的多模态大型语言模型,以提升癌症诊断的精确性和效率 | 未提及具体的技术实现细节或实验验证 | 探索深度学习在癌症诊断中的最新进展及其对医学影像解释和多模态数据整合的影响 | 深度学习模型及其在癌症诊断中的应用 | 数字病理学 | 癌症 | NA | 大型语言模型 | 多模态数据 | NA |
959 | 2025-06-15 |
Automated Deep Learning Phenotyping of Tricuspid Regurgitation in Echocardiography
2025-Jun-01, JAMA cardiology
IF:14.8Q1
DOI:10.1001/jamacardio.2025.0498
PMID:40238103
|
research paper | 开发了一个深度学习计算机视觉工作流程,用于识别彩色多普勒超声心动图视频并表征三尖瓣反流(TR)的严重程度 | 提出了一个自动化深度学习流程,用于识别和评估三尖瓣反流的严重程度,具有卓越的性能 | 研究仅基于特定医疗中心的数据,未考虑其他临床或人口统计学特征的排除标准 | 设计和评估一个深度学习计算机视觉工作流程,用于识别和评估三尖瓣反流的严重程度 | 彩色多普勒超声心动图视频 | computer vision | cardiovascular disease | deep learning computer vision | deep learning | video | 47,312项研究(2,079,898个视频)来自Cedars-Sinai医疗中心(2011-2021年),测试集包括2,462项研究(108,138个视频)和5,549项研究(278,377个视频)来自Stanford Healthcare |
960 | 2025-05-01 |
BiaPy: accessible deep learning on bioimages
2025-Jun, Nature methods
IF:36.1Q1
DOI:10.1038/s41592-025-02699-y
PMID:40301624
|
NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |