本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新(使用关键词“['deep learning']”过滤),已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!


除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价19.9元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
| 序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 | 算法框架 | 模型架构 | 性能指标 | 计算资源 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 9701 | 2025-10-06 |
The Robust Vessel Segmentation and Centerline Extraction: One-Stage Deep Learning Approach
2025-Jun-26, Journal of imaging
IF:2.7Q3
DOI:10.3390/jimaging11070209
PMID:40710596
|
研究论文 | 提出一种用于血管分割和中心线提取的单阶段深度学习方法 | 集成卷积和图层的混合架构,通过任务特定损失函数同时处理血管分割和中心线提取,直接预测具有实值坐标的多段线中心线 | 仅在142例CT血管造影图像上验证,未在其他模态或更大规模数据上测试 | 开发同时实现血管分割和中心线提取的端到端深度学习方法 | 胸腹部血管的CT血管造影图像 | 计算机视觉 | 心血管疾病 | CT血管造影 | 多任务神经网络 | 医学图像 | 142例CT血管造影图像(来自LIDC-IDRI和AMOS数据集) | NA | 卷积神经网络,图神经网络 | Surface Dice(3mm阈值), Surface Dice(1mm阈值) | NA |
| 9702 | 2025-10-06 |
Artificial Intelligence-Driven Drug Toxicity Prediction: Advances, Challenges, and Future Directions
2025-Jun-23, Toxics
IF:3.9Q1
DOI:10.3390/toxics13070525
PMID:40710970
|
综述 | 本文系统回顾了人工智能在药物毒性预测领域的应用进展、挑战与未来发展方向 | 重点关注深度学习与多模态数据融合策略在药物毒理学评估中的创新应用 | 作为综述文章未提出新的原创模型或算法 | 为药物研发中的毒性预测提供理论框架和技术策略 | 药物毒性预测相关的研究文献和方法 | 机器学习 | NA | 多模态数据融合 | 机器学习,深度学习 | 多模态数据 | NA | NA | NA | NA | NA |
| 9703 | 2025-10-06 |
Optimizing Tumor Detection in Brain MRI with One-Class SVM and Convolutional Neural Network-Based Feature Extraction
2025-Jun-21, Journal of imaging
IF:2.7Q3
DOI:10.3390/jimaging11070207
PMID:40710594
|
研究论文 | 本研究结合单类支持向量机和卷积神经网络特征提取优化脑部MRI中的肿瘤检测 | 使用仅基于健康脑MRI图像特征训练的单类支持向量机,结合多种CNN架构进行特征提取,无需标记的病理数据即可检测脑肿瘤异常 | 需要减少推理时间,扩展和多样化训练数据集,并整合可解释性工具 | 解决医学影像数据类别不平衡问题,提高脑肿瘤早期检测性能 | 脑部MRI图像 | 计算机视觉 | 脑肿瘤 | MRI | OCSVM, CNN | 图像 | NA | NA | DenseNet121, VGG16, MobileNetV2, InceptionV3, ResNet50 | 准确率, 精确率, 敏感度 | 资源受限环境(基于MobileNetV2的评估) |
| 9704 | 2025-10-06 |
RGB-to-Infrared Translation Using Ensemble Learning Applied to Driving Scenarios
2025-Jun-20, Journal of imaging
IF:2.7Q3
DOI:10.3390/jimaging11070206
PMID:40710593
|
研究论文 | 提出一种基于集成学习的RGB到红外图像转换方法,用于增强自动驾驶场景中的多模态感知数据集 | 使用梯度提升决策树替代传统深度学习方法进行图像转换,在数据稀缺情况下表现更优 | 未明确说明方法在极端天气或复杂光照条件下的性能表现 | 解决红外数据稀缺问题,增强自动驾驶感知系统的传感器融合算法 | RGB图像到近红外和热红外图像的转换 | 计算机视觉 | NA | 图像转换,传感器融合 | 梯度提升决策树 | RGB图像,红外图像 | MS2、EPFL和Freiburg数据集 | NA | 集成学习 | R2, PSNR, SSIM, LPIPS | NA |
| 9705 | 2025-10-06 |
A Fully Automated Artificial Intelligence-Based Approach to Predict Renal Function After Radical or Partial Nephrectomy
2025-06, Urology
IF:2.1Q2
DOI:10.1016/j.urology.2025.01.073
PMID:39914676
|
研究论文 | 开发了一种基于人工智能的全自动方法预测肾切除术后肾功能 | 使用完全自动化的深度学习分割模型从术前CT图像中获取分肾功能,无需临床细节或医生干预 | 研究样本量相对较小(300例患者),且仅使用了单一数据集(KiTS19挑战赛数据) | 比较人工智能模型与已验证临床模型在预测肾切除术后肾小球滤过率方面的准确性 | 接受肾切除术的肾肿瘤患者 | 数字病理 | 肾癌 | 计算机断层扫描 | 深度学习 | 医学影像 | 300例肾肿瘤患者 | NA | NA | 相关系数, AUC | NA |
| 9706 | 2025-10-06 |
Identification of Hypertrophic Cardiomyopathy on Electrocardiographic Images with Deep Learning
2025-May-28, medRxiv : the preprint server for health sciences
DOI:10.1101/2023.12.23.23300490
PMID:38234746
|
研究论文 | 开发并验证一种能够从12导联心电图图像中识别肥厚型心肌病的深度学习模型 | 首次开发能够跨不同心电图布局格式识别肥厚型心肌病的深度学习模型,实现基于图像的可扩展筛查 | 模型性能可能受限于训练数据的多样性和外部验证数据集中HCM定义方式的不一致 | 开发一种能够在临床环境中进行肥厚型心肌病筛查的深度学习模型 | 心电图图像和肥厚型心肌病患者 | 计算机视觉 | 心血管疾病 | 深度学习,心脏磁共振成像,超声心动图 | 深度学习模型 | 心电图图像 | 124,553份心电图,来自66,987名个体 | NA | NA | AUROC | NA |
| 9707 | 2025-06-01 |
Letter to the Editor on "Deep Learning Algorithms to Predict Differential Renal Function <40% in Unilateral Hydronephrosis Based on Key Parameters of Urinary Tract Ultrasound"
2025-May-28, Urology
IF:2.1Q2
DOI:10.1016/j.urology.2025.05.044
PMID:40447158
|
NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
| 9708 | 2025-10-06 |
Deep Learning-Based Classification of Peptide Analytes from Single-Channel Nanopore Translocation Events
2025-May-06, bioRxiv : the preprint server for biology
DOI:10.1101/2025.05.04.652126
PMID:40654724
|
研究论文 | 提出一种基于深度学习的纳米孔易位事件肽分析物分类方法 | 开发了包含分支输入网络的新型深度学习框架,结合时序卷积网络处理电导状态序列和密集网络整合动力学特征 | 使用模拟数据而非真实实验数据,部分肽具有相似动力学参数导致事件级预测困难 | 实现纳米孔生物传感器中肽生物标志物的快速准确检测 | 七种肽的模拟多态易位数据 | 机器学习 | NA | 纳米孔传感技术 | CNN,RNN,TCN | 电流记录信号数据 | 七种肽的模拟易位数据 | NA | Deep-Channel,分支输入网络,时序卷积网络,密集网络 | 准确率,MAE | NA |
| 9709 | 2025-10-06 |
SlicesMapi: An Interactive Three-Dimensional Registration Method for Serial Histological Brain Slices
2025-Apr-16, Neuroinformatics
IF:2.7Q3
DOI:10.1007/s12021-025-09724-7
PMID:40240690
|
研究论文 | 提出一种用于序列脑组织切片的三维交互式配准方法SlicesMapi | 通过相邻切片和参考图谱切片的双重约束同时校正3D和2D空间的线性和非线性形变,并采用全分辨率图像配准避免深度学习方法的降采样信息损失 | NA | 解决2D脑切片图像与3D参考脑图谱配准的精度、计算效率和适用性挑战 | 脑组织切片序列 | 数字病理 | NA | 脑切片技术 | NA | 图像 | NA | NA | NA | Dice系数 | NA |
| 9710 | 2025-10-06 |
Prior Visual-Guided Self-Supervised Learning Enables Color Vignetting Correction for High-Throughput Microscopic Imaging
2025-04, IEEE journal of biomedical and health informatics
IF:6.7Q1
DOI:10.1109/JBHI.2024.3471907
PMID:39412976
|
研究论文 | 提出一种自监督深度学习算法VCLUT,用于校正彩色显微图像中的渐晕效应 | 利用显微图像均匀性和渐晕径向衰减特性的先验知识,开发了可同时在单张和多张图像上训练的自监督学习方法 | NA | 开发一种鲁棒高效的彩色显微图像渐晕校正方法 | 彩色显微图像中的渐晕效应 | 数字病理学 | NA | 显微成像 | GAN | 彩色显微图像 | 五种不同生物标本数据 | NA | NA | 定性评估,定量测量 | NA |
| 9711 | 2025-10-06 |
ROXSI: Robust Cross-Sequence Semantic Interaction for Brain Tumor Segmentation on Multi-Sequence MR Images
2025-04, IEEE journal of biomedical and health informatics
IF:6.7Q1
DOI:10.1109/JBHI.2024.3513479
PMID:40030420
|
研究论文 | 提出一种鲁棒的脑肿瘤分割框架ROXSI,用于处理多序列MR图像中的噪声和伪影问题 | 提出跨序列语义交互模块(CSSI)利用序列间相关性提取抗噪声特征,结合批次级协方差机制和序列级方差正则化机制 | NA | 提高多序列MR图像中脑肿瘤分割的鲁棒性 | 多序列磁共振成像(MRI)中的脑肿瘤 | 计算机视觉 | 脑肿瘤 | 磁共振成像(MRI) | 深度学习 | 医学图像 | 两个基准数据集 | NA | CNN, Transformer | 分割性能评估 | NA |
| 9712 | 2025-10-06 |
Decoding SSVEP Via Calibration-Free TFA-Net: A Novel Network Using Time-Frequency Features
2025-04, IEEE journal of biomedical and health informatics
IF:6.7Q1
DOI:10.1109/JBHI.2024.3510740
PMID:40030575
|
研究论文 | 提出一种基于时频特征的校准自由TFA-Net网络用于解码稳态视觉诱发电位信号 | 首次提出结合频率注意力和通道重组模块的CNN模型,无需校准阶段即可实现SSVEP信号解码 | 仅在公开数据集上验证,未提及在其他数据集或实际场景中的泛化能力 | 开发无需校准的脑机接口解码方法,提高SSVEP信号识别性能 | 稳态视觉诱发电位信号 | 脑机接口 | NA | 脑电图信号处理 | CNN | 时频域信号 | 公开数据集(具体数量未说明) | NA | TFA-Net | 准确率, 信息传输率 | NA |
| 9713 | 2025-10-06 |
EEGDfus: A Conditional Diffusion Model for Fine-Grained EEG Denoising
2025-04, IEEE journal of biomedical and health informatics
IF:6.7Q1
DOI:10.1109/JBHI.2024.3504716
PMID:40030273
|
研究论文 | 提出一种用于脑电图精细去噪的条件扩散模型EEGDfus | 将标准扩散模型改进为条件扩散模型,用含噪EEG信息作为条件指导生成干净EEG信号,并设计双分支网络结合CNN和Transformer的优势 | 未明确说明模型计算复杂度及实时处理能力 | 开发更精确的EEG信号去噪方法以提高脑电数据分析质量 | 脑电图信号 | 生物医学信号处理 | NA | 脑电图信号处理 | 条件扩散模型,CNN,Transformer | 脑电图信号数据 | 两个公开数据集EEGdenoiseNet和SSED | NA | 双分支网络架构 | 相关系数 | NA |
| 9714 | 2025-10-06 |
From Micro to Meso: A Data-Driven Mesoscopic Region Division Method Based on Functional Connectivity for EEG-Based Driver Fatigue Detection
2025-04, IEEE journal of biomedical and health informatics
IF:6.7Q1
DOI:10.1109/JBHI.2024.3504847
PMID:40030270
|
研究论文 | 提出一种基于功能连接性的数据驱动中观区域划分方法,用于EEG脑电信号的驾驶员疲劳检测 | 首次提出基于数据特征和功能连接性的中观区域划分方法,无需依赖任务特定先验知识 | 方法在多样化任务中的泛化能力仍需进一步验证 | 开发更有效的EEG信号处理方法以提升驾驶员疲劳检测性能 | EEG脑电信号和驾驶员疲劳状态 | 脑机接口, 深度学习 | 疲劳状态检测 | EEG脑电信号分析, 功能连接性分析 | GNN | EEG脑电信号 | 公共驾驶员疲劳检测数据集 | NA | 基于功能连接性的图神经网络 | 分类准确率 | NA |
| 9715 | 2025-10-06 |
C2BNet: A Deep Learning Architecture With Coupled Composite Backbone for Parasitic Egg Detection in Microscopic Images
2025-04, IEEE journal of biomedical and health informatics
IF:6.7Q1
DOI:10.1109/JBHI.2023.3318604
PMID:37747862
|
研究论文 | 提出一种用于显微图像中寄生虫卵检测的深度学习架构C2BNet | 采用双路径结构的耦合复合主干网络,通过模型异质性从不同视角学习目标特征,并提出新颖的特征组合方式实现路径间特征表示能力的相互增强 | NA | 改进显微图像中寄生虫卵检测的模型性能 | 显微图像中的寄生虫卵 | 计算机视觉 | 肠道寄生虫感染 | 显微成像 | 深度学习 | 2D显微图像 | Chula-ParasiteEgg-11数据集 | NA | C2BNet | 检测精度 | NA |
| 9716 | 2025-10-06 |
SeqNovo: De Novo Peptide Sequencing Prediction in IoMT via Seq2Seq
2025-04, IEEE journal of biomedical and health informatics
IF:6.7Q1
DOI:10.1109/JBHI.2023.3321780
PMID:37792659
|
研究论文 | 提出一种名为SeqNovo的新模型,用于IoMT中的从头肽段测序预测 | 结合Seq2Seq编码-解码结构、多层感知机的高度非线性特性以及注意力机制捕获长程依赖的能力 | NA | 解决现有深度学习模型在肽段测序预测中可解释性差和长程依赖捕获能力不足的问题 | 肽段测序预测 | 自然语言处理 | NA | 从头肽段测序 | Seq2Seq, MLP, 注意力机制 | 序列数据 | NA | NA | Seq2Seq, MLP, 注意力机制 | 准确率 | NA |
| 9717 | 2025-10-06 |
Label-Aware Dual Graph Neural Networks for Multi-Label Fundus Image Classification
2025-04, IEEE journal of biomedical and health informatics
IF:6.7Q1
DOI:10.1109/JBHI.2024.3457232
PMID:39255075
|
研究论文 | 提出一种用于多标签眼底图像分类的标签感知双图神经网络方法 | 首次将基于人群的图表示学习和基于病理的图表示学习相结合,同时考虑受试者间关联和病理标签共现关系 | 未明确说明模型在临床环境中的泛化能力和计算效率 | 开发更准确的眼底疾病多标签分类方法 | 眼底图像及其相关的多病理标签 | 计算机视觉 | 眼底疾病 | 深度学习 | 图神经网络 | 眼底图像 | NA | NA | 双图神经网络 | NA | NA |
| 9718 | 2025-10-06 |
Deep Learning for Predicting Difficulty in Radical Prostatectomy: A Novel Evaluation Scheme
2025-04, Urology
IF:2.1Q2
DOI:10.1016/j.urology.2025.01.028
PMID:39814211
|
研究论文 | 通过两阶段深度学习方法从术前磁共振成像预测根治性前列腺切除术难度 | 提出基于高斯热图的改进PointNet网络间接回归解剖标志点,并创新性地定义了描述前列腺与骨盆空间关系的新评估指标 | 研究样本量相对有限(290例患者),且仅针对两种手术方式(腹腔镜和机器人辅助)进行验证 | 探索评估根治性前列腺切除术难度的新指标 | 接受根治性前列腺切除术的患者 | 医学影像分析 | 前列腺癌 | 磁共振成像 | 深度学习 | 医学影像 | 290例患者(来自两个真实队列) | nnUNet_v2 | nnUNet, PointNet | Dice系数, 毫米级精度 | NA |
| 9719 | 2025-10-06 |
HIPPIE: A Multimodal Deep Learning Model for Electrophysiological Classification of Neurons
2025-Mar-15, bioRxiv : the preprint server for biology
DOI:10.1101/2025.03.14.642461
PMID:40161713
|
研究论文 | 提出一种名为HIPPIE的多模态深度学习模型,用于从细胞外电生理记录中进行神经元分类 | 结合自监督预训练和监督微调,使用条件卷积联合自编码器学习波形和放电动力学的鲁棒表示,能够跨实验系统进行技术调整 | NA | 解决细胞外电生理记录中因噪声、技术变异和批次效应带来的神经元分类挑战 | 小鼠记录和脑切片中的神经元 | 机器学习 | NA | 细胞外电生理记录 | 自编码器,深度学习 | 电生理信号 | NA | NA | 条件卷积联合自编码器 | 细胞类型鉴别性能 | NA |
| 9720 | 2025-10-06 |
Syn-Net: A Synchronous Frequency-Perception Fusion Network for Breast Tumor Segmentation in Ultrasound Images
2025-03, IEEE journal of biomedical and health informatics
IF:6.7Q1
DOI:10.1109/JBHI.2024.3514134
PMID:40030423
|
研究论文 | 提出一种用于超声图像中乳腺肿瘤分割的同步频率感知融合网络 | 设计了同步双分支编码器同时提取局部和全局特征,并引入频率感知交叉特征融合模块利用离散余弦变换学习全频特征 | NA | 实现复杂超声图像中乳腺肿瘤的精确分割 | 超声图像中的乳腺肿瘤 | 计算机视觉 | 乳腺癌 | 超声成像 | 深度学习分割网络 | 超声图像 | 三个公开超声乳腺肿瘤数据集 | NA | 同步双分支编码器,频率感知交叉特征融合模块,全尺度深度监督 | Dice系数 | NA |