深度学习在生物医药领域中的应用

本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!

如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!

Sample Image
添加微信请说明来意
Sample Image
微信赞赏

除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。

当前筛选条件: [分区不过滤] [IF不过滤] [发表日期不过滤] [清除筛选条件]
当前共找到 24240 篇文献,本页显示第 961 - 980 篇。
序号 推送日期 文章 类型 简述 创新点 不足 研究目的 研究对象 领域 病种 技术 模型 数据类型 样本量
961 2025-05-01
Development of Multicenter Deep Learning Models for Predicting Surgical Complexity and Surgical Site Infection in Abdominal Wall Reconstruction, a Pilot Study
2025, Journal of abdominal wall surgery : JAWS
研究论文 开发用于预测腹壁重建手术复杂性和手术部位感染风险的多中心深度学习模型 首次使用多中心深度学习模型预测腹壁重建手术的复杂性和手术部位感染风险 CST模型表现不佳,可能反映了手术决策的主观性和不同机构的实践差异 预测腹壁重建手术的复杂性和手术部位感染风险 腹壁重建手术患者 数字病理 腹壁疝 深度学习 ResNet-18 CT图像 来自两个三级腹壁重建中心的去标识化CT图像
962 2025-05-01
RSDCNet: An efficient and lightweight deep learning model for benign and malignant pathology detection in breast cancer
2025 Jan-Dec, Digital health IF:2.9Q2
研究论文 本研究提出了一种名为RSDCNet的高效轻量级深度学习模型,用于乳腺癌良恶性病理检测 RSDCNet结合了深度可分离卷积和SCSE模块,在减少模型参数的同时增强了关键特征提取能力,实现了轻量化和高效率 研究仅使用了BreakHis数据集,未在其他独立数据集上进行验证 开发一种高效、自动化和精确的乳腺癌病理检测方法 乳腺癌良恶性病理图像 数字病理 乳腺癌 深度学习 RSDCNet(基于CNN的改进模型) 图像 9109张乳腺肿瘤显微图像(来自BreakHis数据集)
963 2025-05-01
Magnetic resonance radiomics-based deep learning model for diagnosis of Alzheimer's disease
2025 Jan-Dec, Digital health IF:2.9Q2
研究论文 本研究提出了一种基于磁共振影像组学和深度学习的模型,用于阿尔茨海默病的诊断 结合磁共振影像组学特征和深度学习模型TabNet,实现了阿尔茨海默病的高精度诊断 研究样本量相对有限,且来自特定种族群体 开发一种基于深度学习的阿尔茨海默病诊断方法 阿尔茨海默病患者、轻度认知障碍患者和正常对照者 数字病理学 老年病 磁共振成像(MRI) TabNet 图像 ADNI数据库中的141名AD患者、166名MCI患者和231名正常对照者,以及华山医院的45名AD患者、35名MCI患者和31名正常对照者
964 2025-05-01
Development of a deep learning model to predict smoking status in patients with chronic obstructive pulmonary disease: A secondary analysis of cross-sectional national survey
2025 Jan-Dec, Digital health IF:2.9Q2
研究论文 开发并验证了一个深度学习模型,用于预测慢性阻塞性肺疾病(COPD)患者的吸烟状况 使用残差神经网络(ResNN)模型预测COPD患者的吸烟状况,并比较了多种机器学习和深度学习模型,性能优于其他模型 需要外部验证,并纳入更多行为和心理学变量以提高模型的通用性和性能 开发一个深度学习模型,用于预测COPD患者的吸烟状况 COPD患者 机器学习 慢性阻塞性肺疾病 深度学习 ResNN 结构化数据(包括人口统计学、行为学和临床变量) 5466例COPD患者
965 2025-05-01
A hybrid power load forecasting model using BiStacking and TCN-GRU
2025, PloS one IF:2.9Q1
研究论文 本文提出了一种结合集成学习和深度学习技术的混合预测模型BiStacking+TCN-GRU,用于电力负荷预测 结合了BiStacking集成学习和TCN-GRU深度学习技术,通过Pearson相关系数选择特征,提高了预测准确性 实验数据仅基于巴拿马2020年的电力负荷数据,可能在其他地区或时间段的适用性有待验证 提高电力负荷预测的准确性,减少能源浪费并改善电网稳定性 电力负荷数据 机器学习 NA Pearson相关系数(PCC)、BiStacking、TCN、GRU BiStacking+TCN-GRU 电力负荷数据 巴拿马2020年电力负荷数据
966 2025-05-01
Diagnostic Performance of Deep Learning Applications in Hepatocellular Carcinoma Detection Using Computed Tomography Imaging
2024-Dec-30, The Turkish journal of gastroenterology : the official journal of Turkish Society of Gastroenterology
research paper 本研究利用深度学习技术中的YOLO架构,通过计算机断层扫描(CT)图像提高肝细胞癌(HCC)的检测能力,旨在改善早期诊断和患者预后 采用YOLO架构的深度学习模型在HCC检测中表现出卓越的诊断准确性,显著超越传统诊断方法 研究样本量相对较小,仅包含122名患者的1290张CT图像 提高肝细胞癌的早期检测能力,改善患者预后 肝细胞癌(HCC)患者的CT图像 computer vision liver cancer CT imaging YOLO image 1290张CT图像来自122名患者
967 2025-05-01
Transcription factor prediction using protein 3D secondary structures
2024-Dec-26, Bioinformatics (Oxford, England)
research paper 提出了一种基于深度学习的转录因子预测方法StrucTFactor,首次利用蛋白质的3D二级结构信息进行预测 首次利用蛋白质的3D二级结构信息进行转录因子预测,显著提高了预测准确性 可能受到数据偏差(如序列冗余)的影响 提高转录因子的预测准确性 蛋白质 machine learning NA deep learning StrucTFactor protein 3D secondary structures 约525,000个蛋白质,涵盖12个数据集
968 2025-05-01
BetaAlign: a deep learning approach for multiple sequence alignment
2024-Dec-26, Bioinformatics (Oxford, England)
研究论文 提出了一种基于深度学习的多序列比对方法BetaAlign,利用自然语言处理技术进行序列比对 首次将深度学习应用于多序列比对,利用NLP技术和transformer模型,显著区别于传统比对算法 训练数据规模、不同transformer架构以及子空间学习等因素可能影响准确性 改进多序列比对的计算方法,挑战传统生物信息学和系统基因组学中的经典算法 生物序列的多序列比对 生物信息学 NA 自然语言处理(NLP) transformer 生物序列数据 NA
969 2025-05-01
Forecasting Subway Passenger Flow for Station-Level Service Supply
2024-12, Big data IF:2.6Q2
research paper 提出了一种名为DeepSPF的深度学习架构,用于预测考虑不同功能类型车站的地铁客流 结合LSTM和一维卷积的滑动长短期记忆神经网络,能够识别不同类型车站的未来客流差异 实验仅在北京地铁进行,未在其他城市地铁系统验证 提高地铁站点级服务供应的客流预测准确性 地铁车站的乘客流量 machine learning NA deep learning LSTM, CNN time series data 北京地铁数据
970 2025-05-01
Structures of Epstein-Barr virus and Kaposi's sarcoma-associated herpesvirus virions reveal species-specific tegument and envelope features
2024-Nov-19, Journal of virology IF:4.0Q2
研究论文 通过深度学习增强的冷冻电子断层扫描技术,揭示了EBV和KSHV病毒粒子的结构特征 首次报道了完整的人类γ疱疹病毒粒子的结构,揭示了病毒粒子中衣壳外部的多形性特征以及病毒包膜和皮层结构的物种特异性差异 研究主要关注细胞外病毒粒子,可能无法完全反映细胞内病毒组装过程的动态特性 解析EBV和KSHV病毒粒子的三维结构特征 EB病毒(Epstein-Barr virus)和卡波西肉瘤相关疱疹病毒(Kaposi's sarcoma-associated herpesvirus) 结构生物学 肿瘤相关病毒感染 冷冻电子断层扫描(cryoET)结合深度学习 深度学习增强的图像处理 冷冻电子断层扫描图像 未明确说明样本数量,研究使用EBV和KSHV的细胞外病毒粒子
971 2025-05-01
Deep learning-based fishing ground prediction with multiple environmental factors
2024-Nov, Marine life science & technology IF:5.8Q1
research paper 本研究开发了一种基于深度学习的多环境因素渔场预测模型,以西北太平洋的飞鱿鱼为例 采用改进的U-Net模型结合多种环境因素(海面温度、高度、盐度和叶绿素)进行渔场预测,显著提高了渔场中心区域的集中度 研究仅针对西北太平洋的飞鱿鱼渔场,模型在其他海域或鱼种的适用性有待验证 提高海洋经济鱼种渔场预测的准确性 西北太平洋的飞鱿鱼渔场 machine learning NA 深度学习 改进的U-Net 环境参数数据(海面温度、高度、盐度、叶绿素) 2002-2019年7月至11月的数据用于训练,2020年数据用于测试
972 2025-05-01
An artificial intelligence grading system of apical periodontitis in cone-beam computed tomography data
2024-10-01, Dento maxillo facial radiology
research paper 开发了一种基于深度学习的根尖周炎分级系统,用于辅助初级医生诊断 提出了一种自创的PAINet算法,并在性能上优于经典算法和最新的Transformer模型 样本量较小,仅包含120张CBCT图像 开发并评估一种基于人工智能的根尖周炎分级系统 根尖周炎(AP)的CBCT图像 digital pathology apical periodontitis deep learning ResNet50/101/152, PAINet, Transformer-based models, attention models image 120张CBCT图像
973 2025-05-01
Automatic classification and segmentation of multiclass jaw lesions in cone-beam CT using deep learning
2024-10-01, Dento maxillo facial radiology
研究论文 开发并验证了一种基于nnU-Net改进的深度学习模型,用于在锥束CT中对五类颌骨病变进行分类和分割 提出了一种改进的nnU-Net模型,能够同时完成颌骨病变的分类和分割任务,并在性能上超越口腔颌面放射科医生和外科医生 未提及样本的多样性和模型的泛化能力 提高颌骨病变在锥束CT中的自动分类和分割准确率 颌骨病变 数字病理 颌骨病变 锥束CT (CBCT) nnU-Net 医学影像 368例CBCT扫描(37,168张切片)
974 2025-05-01
Hybrid Deep Learning Approach for Traffic Speed Prediction
2024-10, Big data IF:2.6Q2
研究论文 提出了一种名为HDL4TSP的混合深度学习方法,用于预测城市各区域的交通速度 同时建模交通数据的空间和时间相关性,通过图卷积网络和ConvLSTM网络分别捕捉空间和时间维度的依赖关系 未提及具体的数据集规模或模型在不同城市或交通条件下的泛化能力 提高交通速度预测的准确性,以支持交通管理和驾驶路线规划 城市各区域的交通速度数据 机器学习 NA 深度学习 图卷积网络(GCN)、ConvLSTM 交通速度数据 两个真实世界的数据集
975 2025-05-01
A Network Intrusion Detection System Using Hybrid Multilayer Deep Learning Model
2024-10, Big data IF:2.6Q2
research paper 提出了一种使用混合多层深度学习模型的网络入侵检测系统 结合多层卷积神经网络和softmax分类器,以及多层深度神经网络,提高了入侵检测的准确率 仅使用了NSL-KDD和KDDCUP'99两个数据集进行实验,可能在其他数据集上表现不同 提高网络入侵检测系统的准确率 网络流量数据 machine learning NA 深度学习 CNN, softmax classifier, deep neural network 网络流量数据 NSL-KDD和KDDCUP'99数据集
976 2025-05-01
Deep learning in the diagnosis of maxillary sinus diseases: a systematic review
2024-09-01, Dento maxillo facial radiology
系统综述 评估深度学习在上颌窦疾病检测、分类和分割中的性能 系统综述了深度学习在上颌窦疾病诊断中的应用,涵盖了多种任务类型和模型组合 仅纳入了截至2024年2月7日发表的英文论文,可能存在发表偏倚 评估深度学习在上颌窦疾病诊断中的性能 上颌窦疾病 数字病理 上颌窦疾病 深度学习 DL 放射影像 14项研究(从1167项研究中筛选)
977 2025-05-01
Detection and classification of mandibular fractures in panoramic radiography using artificial intelligence
2024-09-01, Dento maxillo facial radiology
研究论文 本研究评估了YOLOv5深度学习模型在全景X光片中检测不同类型下颌骨骨折的性能 使用YOLOv5模型对六种下颌骨骨折类型进行检测和分类,特别是在体和联合区域表现出色 在检测髁突头和髁突颈骨折时表现较差,精度和灵敏度较低 评估人工智能在全景X光片中检测和分类下颌骨骨折的潜力 下颌骨骨折的全景X光片 计算机视觉 下颌骨骨折 深度学习 YOLOv5 图像 498张全景X光片,包含673处骨折
978 2025-05-01
Accurate, automated classification of radiographic knee osteoarthritis severity using a novel method of deep learning: Plug-in modules
2024-Aug-13, Knee surgery & related research IF:4.1Q1
研究论文 开发了一种基于深度学习的自动膝关节骨关节炎严重程度分类模型 使用插件模块(PIM)提升细粒度分类任务的性能,优于之前的深度学习模型 未来仍需改进,模型在KL等级1的分类准确率较低(43%) 开发自动膝关节骨关节炎严重程度分类模型 膝关节骨关节炎的X光片 计算机视觉 骨关节炎 深度学习 CNN或transformer-based网络与PIM模块集成 图像 训练集:Osteoarthritis Initiative数据集;测试集:17,040例(Multicenter Osteoarthritis Study)
979 2025-05-01
Automated cooling tower detection through deep learning for Legionnaires' disease outbreak investigations: a model development and validation study
2024-Jul, The Lancet. Digital health
研究论文 本研究开发并验证了一种基于深度学习的计算机视觉模型,用于自动检测航空图像中的冷却塔,以加速军团病爆发的调查 使用YOLOv5和EfficientNet-b5两阶段模型自动检测冷却塔,显著提高了检测速度和准确性 模型在未训练过的城市(如波士顿和雅典)的表现略有下降,PPV和敏感度有所降低 开发一种自动检测冷却塔的深度学习模型,以加速军团病爆发的调查和源头控制 航空图像中的冷却塔 计算机视觉 军团病 深度学习 YOLOv5, EfficientNet-b5 卫星图像 2051张包含7292个冷却塔的图像,测试数据集包含548张图像
980 2025-05-01
DMAF-Net: deformable multi-scale adaptive fusion network for dental structure detection with panoramic radiographs
2024-06-28, Dento maxillo facial radiology
研究论文 提出了一种名为DMAF-Net的可变形多尺度自适应融合网络,用于全景X光片中的牙齿结构检测 改进了YOLO网络,通过不同模块增强特征提取能力,并利用自适应空间特征融合解决不同特征层尺度不匹配的问题 NA 提高全景X光片中牙齿结构问题检测的准确性 牙齿结构问题(阻生牙、缺失牙、种植体、冠修复体和根管治疗牙) 计算机视觉 牙科疾病 深度学习 DMAF-Net(基于YOLO改进) 图像(全景X光片) 1474张全景X光片
回到顶部