本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新(使用关键词“['deep learning']”过滤),已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!


除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价19.9元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
| 序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 | 算法框架 | 模型架构 | 性能指标 | 计算资源 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 9781 | 2025-10-06 |
RS-MAE: Region-State Masked Autoencoder for Neuropsychiatric Disorder Classifications Based on Resting-State fMRI
2025-Jun, IEEE transactions on neural networks and learning systems
IF:10.2Q1
DOI:10.1109/TNNLS.2024.3449949
PMID:39325609
|
研究论文 | 提出一种基于静息态fMRI的区域状态掩码自编码器用于神经精神疾病分类 | 引入掩码自编码器减少DFC矩阵冗余,提出区域状态块嵌入适应连接性数据,采用随机状态拼接缓解训练样本不足问题 | 未明确说明模型在小样本情况下的泛化能力及计算复杂度 | 基于静息态功能磁共振成像的神经精神疾病分类 | 注意力缺陷多动障碍、自闭症谱系障碍、阿尔茨海默病和精神分裂症患者 | 医学影像分析 | 神经精神疾病 | 静息态功能磁共振成像 | 掩码自编码器 | 动态功能连接矩阵 | 四个公开数据集(具体样本数未明确说明) | NA | RS-MAE | 准确率 | NA |
| 9782 | 2025-10-06 |
Hyperparameter Recommendation Integrated With Convolutional Neural Network
2025-Jun, IEEE transactions on neural networks and learning systems
IF:10.2Q1
DOI:10.1109/TNNLS.2024.3476439
PMID:39423079
|
研究论文 | 提出一种集成卷积神经网络的超参数推荐方法 | 首次将CNN应用于超参数推荐领域,开发了具有特征选择能力的CNN回归器和卷积去噪自编码器,能够深度挖掘数据特征和超参数性能的空间结构 | 仅针对SVM分类器进行验证,未扩展到其他机器学习模型 | 开发基于深度学习的超参数推荐系统 | 分类问题的超参数优化 | 机器学习 | NA | 元学习 | CNN, ConvDAE | 数据集特征,超参数性能数据 | 400个真实分类问题 | NA | 卷积神经网络,卷积去噪自编码器,双分支CNN | NA | NA |
| 9783 | 2025-10-06 |
Spike-and-Slab Shrinkage Priors for Structurally Sparse Bayesian Neural Networks
2025-Jun, IEEE transactions on neural networks and learning systems
IF:10.2Q1
DOI:10.1109/TNNLS.2024.3485529
PMID:39480710
|
研究论文 | 本文提出两种基于尖峰-平板先验的结构化稀疏贝叶斯神经网络,用于模型压缩和计算效率提升 | 首次将尖峰-平板群组Lasso和尖峰-平板群组Horseshoe先验应用于贝叶斯神经网络的结构化稀疏化 | 未明确说明具体数据集规模和实验设置的局限性 | 开发结构化稀疏的贝叶斯神经网络以实现模型压缩和计算效率优化 | 贝叶斯神经网络的结构化稀疏化 | 机器学习 | NA | 变分推断,连续松弛技术 | 贝叶斯神经网络 | NA | NA | NA | 结构化稀疏神经网络 | 预测准确率,模型压缩率,推理延迟 | NA |
| 9784 | 2025-06-05 |
The Pivotal Role of Baseline LDCT for Lung Cancer Screening in the Era of Artificial Intelligence
2025-Jun, Archivos de bronconeumologia
IF:8.7Q1
DOI:10.1016/j.arbres.2024.11.001
PMID:39643515
|
综述 | 本文探讨了在人工智能时代,基线低剂量计算机断层扫描(LDCT)在肺癌筛查中的关键作用及其面临的挑战 | 探讨了人工智能如何通过分析LDCT的放射组学特征来区分良恶性结节,并预测肺癌和心血管疾病的风险,实现个性化筛查 | 人工智能在LDCT筛查路径中的主要障碍是性能的普适性和可解释性 | 评估基线LDCT检查在肺癌筛查中的重要性,并探索人工智能在克服筛查挑战中的作用 | 肺癌筛查参与者及其基线LDCT检查结果 | 数字病理学 | 肺癌 | LDCT, 深度学习 | DL | 图像 | NA | NA | NA | NA | NA |
| 9785 | 2025-10-06 |
G-Diff: A Graph-Based Decoding Network for Diffusion Recommender Model
2025-Jun, IEEE transactions on neural networks and learning systems
IF:10.2Q1
DOI:10.1109/TNNLS.2024.3491827
PMID:39531577
|
研究论文 | 本文提出一种基于图的解码网络G-Diff来改进扩散推荐模型,通过引入物品关系图提升推荐性能 | 在扩散模型的反向过程中引入精心设计的基于图的解码网络,利用物品间关系提升推荐效果,同时通过跳跃连接和归一化层保留低阶邻居信息 | NA | 改进扩散推荐模型的性能,更好地利用推荐系统中物品的集体信号 | 推荐系统中的用户偏好预测 | 机器学习 | NA | 扩散模型 | 图神经网络,扩散模型 | 推荐系统数据 | 三个真实世界数据集 | NA | G-Diff,基于图的解码网络 | 推荐性能指标 | NA |
| 9786 | 2025-06-05 |
Learning topological horseshoes in time series via deep neural networks
2025-Jun-01, Chaos (Woodbury, N.Y.)
DOI:10.1063/5.0270132
PMID:40465250
|
research paper | 提出了一种基于深度学习的几何方法,用于识别时间序列中的混沌动力学 | 结合拓扑马蹄理论和深度神经网络,为复杂非线性系统中混沌行为的检测提供了新工具 | NA | 识别时间序列中的混沌动力学 | 时间序列数据 | machine learning | NA | deep learning | deep neural networks | time series | Hénon map, Lorenz system, Duffing system | NA | NA | NA | NA |
| 9787 | 2025-06-05 |
iPSC-RPE patch restores photoreceptors and regenerates choriocapillaris in a pig retinal degeneration model
2025-May-22, JCI insight
IF:6.3Q1
DOI:10.1172/jci.insight.179246
PMID:40401519
|
research paper | 该研究开发了一种基于诱导多能干细胞衍生的视网膜色素上皮(iRPE)贴片,用于治疗干性年龄相关性黄斑变性(AMD),并在猪视网膜退化模型中验证了其恢复光感受器和再生脉络膜毛细血管的能力 | 使用可生物降解的PLGA支架成熟iRPE细胞,开发了一种临床兼容的制造工艺,并通过深度学习算法和自适应光学成像验证了治疗效果 | 研究仅在猪模型中进行,尚未在人体临床试验中验证 | 开发并验证一种能够恢复光感受器和再生脉络膜毛细血管的治疗方法,以治疗干性年龄相关性黄斑变性 | 激光诱导的外视网膜退化的猪模型 | digital pathology | age-related macular degeneration | optical coherence tomography (OCT), OCT-angiography, adaptive optics imaging | deep learning algorithm | image | 猪模型中的视网膜区域 | NA | NA | NA | NA |
| 9788 | 2025-06-05 |
Evaluation of data collection and annotation approaches of driver gaze dataset
2025-May-14, Behavior research methods
IF:4.6Q1
DOI:10.3758/s13428-025-02679-2
PMID:40369353
|
research paper | 本研究评估了驾驶员视线数据集的三种标注方法,并提出了一种新的基于移动指针的标注方法 | 引入了一种新的基于移动指针的标注方法,该方法受到基于屏幕的视线数据收集的启发 | 手动标注和Speak2Label方法的准确性较低,需要进一步分析误分类原因 | 评估不同数据收集和标注方法在驾驶员视线估计中的效果 | 驾驶员视线数据集 | computer vision | NA | eye tracker | supervised machine learning, deep learning | image | NA | NA | NA | NA | NA |
| 9789 | 2025-06-05 |
Combining structural modeling and deep learning to calculate the E. coli protein interactome and functional networks
2025-May-12, bioRxiv : the preprint server for biology
DOI:10.1101/2025.05.07.652715
PMID:40463260
|
研究论文 | 本文报告了三种计算方法的整合,用于在全蛋白质组范围内预测两个蛋白质是否可能形成二元复合物 | 整合了PrePPI、Topsy-Turvy和ZEPPI三种方法,显著提高了高置信度蛋白质相互作用的预测数量 | 方法依赖于计算预测,需要进一步的实验验证 | 预测大肠杆菌蛋白质相互作用组和功能网络 | 大肠杆菌蛋白质 | 计算生物学 | NA | PrePPI、Topsy-Turvy、ZEPPI、AF3Complex | 蛋白质语言模型 | 蛋白质序列和结构数据 | 400个蛋白质-蛋白质相互作用 | NA | NA | NA | NA |
| 9790 | 2025-06-05 |
Evaluating Vision and Pathology Foundation Models for Computational Pathology: A Comprehensive Benchmark Study
2025-May-12, medRxiv : the preprint server for health sciences
DOI:10.1101/2025.05.08.25327250
PMID:40463538
|
research paper | 该研究对31种计算病理学AI基础模型进行了全面基准测试,评估它们在多样组织病理学数据集和任务中的表现 | 首次系统比较了不同类型病理学基础模型的性能,并发现模型大小与数据规模并不总是与性能提升相关 | 未深入探讨影响模型性能的潜在因素,且测试数据集可能仍有限 | 评估和比较不同病理学基础模型在计算病理学中的表现 | 31种AI基础模型(包括通用视觉模型、病理专用视觉模型等) | digital pathology | NA | deep learning | foundation models (VM, VLM, Path-VM, Path-VLM) | histopathological images | 41个任务的数据集(来自TCGA、CPTAC等) | NA | NA | NA | NA |
| 9791 | 2025-06-05 |
Evolution-guided protein design of IscB for persistent epigenome editing in vivo
2025-May-07, Nature biotechnology
IF:33.1Q1
DOI:10.1038/s41587-025-02655-3
PMID:40335752
|
研究论文 | 通过结合进化指导和深度学习,设计了一种改进的RNA引导内切酶IscB及其引导RNA,用于体内持久性表观基因组编辑 | 结合直系同源筛选、结构引导的蛋白质域设计、RNA工程和深度学习结构预测,开发了改进的NovaIscB变体,其活性比野生型提高了约100倍,并提高了特异性 | NA | 设计具有增强活性和特异性的RNA引导内切酶,用于分子生物学应用 | IscB RNA引导内切酶及其引导RNA | 分子生物学 | NA | 直系同源筛选、结构引导的蛋白质域设计、RNA工程、深度学习结构预测 | NA | 蛋白质序列和结构数据 | NA | NA | NA | NA | NA |
| 9792 | 2025-10-06 |
Significance of Image Reconstruction Parameters for Future Lung Cancer Risk Prediction Using Low-Dose Chest Computed Tomography and the Open-Access Sybil Algorithm
2025-May-01, Investigative radiology
IF:7.0Q1
DOI:10.1097/RLI.0000000000001131
PMID:39437009
|
研究论文 | 本研究评估了图像重建参数和CT扫描仪制造商对Sybil深度学习算法预测肺癌风险性能的影响 | 首次系统评估了不同图像重建参数对深度学习肺癌风险预测模型性能的影响,并发现了参数组合对中长期预测性能的显著影响 | 研究仅基于美国国家肺癌筛查试验的特定子集数据,且仅比较了两种CT扫描仪制造商 | 评估图像重建参数和CT扫描仪制造商对Sybil算法预测肺癌风险性能的影响 | 美国国家肺癌筛查试验参与者的低剂量胸部CT扫描数据 | 数字病理 | 肺癌 | 低剂量计算机断层扫描(LDCT) | 深度学习算法 | 医学影像 | 1049对标准与骨重建滤波器扫描,1961对标准与肺重建滤波器扫描,1288对2mm与5mm层厚扫描 | NA | Sybil算法 | AUC, 95%置信区间, P值 | NA |
| 9793 | 2025-06-05 |
Comparison between two artificial intelligence models to discriminate cancerous cell nuclei based on confocal fluorescence imaging in hepatocellular carcinoma
2025-May, Digestive and liver disease : official journal of the Italian Society of Gastroenterology and the Italian Association for the Study of the Liver
IF:4.0Q1
DOI:10.1016/j.dld.2024.11.026
PMID:39674779
|
研究论文 | 比较两种人工智能模型在基于共聚焦荧光成像的肝细胞癌中区分癌细胞核的能力 | 首次在肝细胞癌中应用并比较了机器学习和深度学习模型对癌细胞核的自动识别能力 | 研究样本来自商业组织芯片,可能无法完全代表真实临床样本的多样性 | 开发自动识别肝细胞癌细胞核的人工智能工具 | 肝细胞癌细胞核和正常肝细胞核 | 数字病理学 | 肝细胞癌 | 共聚焦显微镜成像 | 机器学习(ML)和深度学习(DL) | 图像 | 商业组织芯片中的健康肝脏和肝细胞癌样本 | NA | NA | NA | NA |
| 9794 | 2025-06-05 |
SegFormer3D: Improving the Robustness of Deep Learning Model-Based Image Segmentation in Ultrasound Volumes of the Pediatric Hip
2025-05, Ultrasound in medicine & biology
|
research paper | 该研究提出了一种名为SegFormer3D的深度学习模型,用于提高儿童髋关节超声体积图像分割的鲁棒性 | 提出了3D SegFormer架构的扩展,这是一种轻量级的基于transformer的模型,具有分层结构的编码器,能够产生多尺度特征,从而同时提高准确性和鲁棒性 | 当前技术的鲁棒性仍不足以可靠地部署到实际临床工作流程中 | 提高儿童髋关节发育不良(DDH)超声图像分割的准确性和鲁棒性 | 儿童髋关节的3D超声图像 | digital pathology | geriatric disease | 3D US imaging, deep learning | SegFormer3D, CNN, vision transformer | 3D ultrasound image | 临床数据来自儿科患者的测试集 | NA | NA | NA | NA |
| 9795 | 2025-05-28 |
Erratum for: MRI-based Deep Learning Assessment of Amyloid, Tau, and Neurodegeneration Biomarker Status across the Alzheimer Disease Spectrum
2025-May, Radiology
IF:12.1Q1
DOI:10.1148/radiol.259008
PMID:40423544
|
NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
| 9796 | 2025-06-05 |
CausalCervixNet: convolutional neural networks with causal insight (CICNN) in cervical cancer cell classification-leveraging deep learning models for enhanced diagnostic accuracy
2025-Apr-03, BMC cancer
IF:3.4Q2
DOI:10.1186/s12885-025-13926-2
PMID:40181353
|
研究论文 | 该研究提出了一种结合因果推理的卷积神经网络CausalCervixNet,用于提高宫颈癌细胞分类的诊断准确性和效率 | 将因果推理、因果推断和因果发现整合到诊断框架中,揭示了潜在的因果关系,而不仅仅是依赖观察相关性,提高了诊断的准确性和可解释性 | 研究仅在三个数据集上进行了验证,可能需要更多样化的数据来进一步验证模型的泛化能力 | 提高宫颈癌细胞的分类和诊断准确性,构建可解释的AI系统 | 宫颈癌细胞图像 | 计算机视觉 | 宫颈癌 | 深度学习 | CNN | 图像 | 三个数据集:SIPaKMeD、Herlev和自收集的ShUCSEIT数据集 | NA | NA | NA | NA |
| 9797 | 2025-10-06 |
Comprehensive Segmentation of Gray Matter Structures on T1-Weighted Brain MRI: A Comparative Study of Convolutional Neural Network, Convolutional Neural Network Hybrid-Transformer or -Mamba Architectures
2025-Apr-02, AJNR. American journal of neuroradiology
DOI:10.3174/ajnr.A8544
PMID:39433334
|
研究论文 | 比较六种先进深度学习模型在T1加权脑MRI上分割122个灰质结构的性能 | 首次系统比较包括CNN、混合Transformer和Mamba架构在内的六种模型在大规模脑结构分割任务中的表现,并验证了U-Mamba_Bot的优越性能 | 数据集规模有限,未来需要更大数据集验证结果,且未探索模型在其他神经系统疾病中的适用性 | 评估深度学习模型在脑MRI灰质结构分割中的性能,寻找最适合临床和研究应用的模型 | 1510例T1加权脑MRI图像,包括正常对照和阿尔茨海默病患者 | 医学影像分析 | 阿尔茨海默病 | T1加权磁共振成像 | CNN, Transformer, Mamba | 医学影像 | 1510例T1加权MRI | NA | nnU-Net, SegResNet, SwinUNETR, UNETR, U-Mamba_BOT, U-Mamba_Enc | Dice相似系数, 95百分位Hausdorff距离 | NA |
| 9798 | 2025-06-05 |
Regional Image Quality Scoring for 2-D Echocardiography Using Deep Learning
2025-04, Ultrasound in medicine & biology
|
research paper | 该研究开发并比较了三种自动评估超声心动图区域图像质量的方法 | 提出了一种端到端的深度学习模型,直接预测图像中各区域的质量,性能优于传统方法 | gCNR指标在本研究中表现不佳,效果有限 | 开发自动评估超声心动图区域图像质量的方法 | 超声心动图的区域图像质量 | 计算机视觉 | 心血管疾病 | 深度学习 | U-Net, 端到端深度学习模型 | 图像 | 由三位经验丰富的心脏病专家提供的手动区域质量标注 | NA | NA | NA | NA |
| 9799 | 2025-06-05 |
SpaMask: Dual masking graph autoencoder with contrastive learning for spatial transcriptomics
2025-Apr, PLoS computational biology
IF:3.8Q1
DOI:10.1371/journal.pcbi.1012881
PMID:40179332
|
研究论文 | 提出了一种名为SpaMask的双重掩码图自编码器结合对比学习方法,用于空间转录组学数据分析 | SpaMask通过同时掩码部分节点和边来增强模型性能和鲁棒性,结合了掩码图自编码器和掩码图对比学习模块 | 未明确提及具体限制 | 提高空间转录组学数据中空间域表征的准确性和鲁棒性 | 空间转录组学数据中的细胞空间位置和基因表达 | 生物信息学 | NA | 空间分辨转录组学(SRT) | 图神经网络(GNN), 掩码图自编码器(MGAE), 掩码图对比学习(MGCL) | 空间转录组数据 | 来自5个不同平台的8个数据集 | NA | NA | NA | NA |
| 9800 | 2025-06-05 |
Deep learning-based breast MRI for predicting axillary lymph node metastasis: a systematic review and meta-analysis
2025-Mar-31, Cancer imaging : the official publication of the International Cancer Imaging Society
IF:3.5Q1
DOI:10.1186/s40644-025-00863-3
PMID:40165212
|
meta-analysis | 评估深度学习算法在乳腺癌MRI中预测腋窝淋巴结转移的诊断性能 | 首次系统评价和荟萃分析深度学习算法在乳腺癌MRI中预测腋窝淋巴结转移的诊断性能 | 研究间存在中度异质性(I2=61%和60%) | 评估深度学习算法在乳腺癌MRI中预测腋窝淋巴结转移的诊断性能 | 乳腺癌患者 | digital pathology | breast cancer | MRI | deep learning | image | 10项研究 | NA | NA | NA | NA |