深度学习在生物医药领域中的应用

本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!

如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!

Sample Image
添加微信请说明来意
Sample Image
微信赞赏

除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。

当前筛选条件: [分区不过滤] [IF不过滤] [发表日期不过滤] [清除筛选条件]
当前共找到 24567 篇文献,本页显示第 9941 - 9960 篇。
序号 推送日期 文章 类型 简述 创新点 不足 研究目的 研究对象 领域 病种 技术 模型 数据类型 样本量
9941 2024-12-25
Deep learning-based patient stratification for prognostic enrichment of clinical dementia trials
2024, Brain communications IF:4.1Q2
研究论文 本文使用深度学习方法对283名早期痴呆患者的多变量疾病轨迹进行聚类,识别出两个不同的进展子组,并在外部验证中独立复制了这些子组 本文首次使用深度学习方法对痴呆患者的疾病进展进行分层,并通过模拟临床试验展示了其减少样本量和降低成本的潜力 本文的局限性在于仅使用了认知和功能评分数据,未考虑其他可能影响疾病进展的因素 本文旨在通过深度学习方法实现临床痴呆试验的预后富集,以提高试验成功率和降低成本 本文的研究对象是283名早期痴呆患者和2779名痴呆患者的疾病进展轨迹 机器学习 痴呆症 深度学习 机器学习模型 多变量数据 283名早期痴呆患者和2779名痴呆患者
9942 2024-12-25
Detection and location of EEG events using deep learning visual inspection
2024, PloS one IF:2.9Q1
研究论文 本文提出了一种基于深度学习的方法,通过视觉检查脑电图(EEG)波形来检测和定位睡眠纺锤波和K复合波 本文采用了一种新颖的方法,通过视觉检查波形来开发一个单一模型,能够同时检测和定位睡眠纺锤波和K复合波,并生成准确的边界框来标示这些事件的位置 结果显示在不同骨干网络和阈值下,检测K复合波的一致性较低 开发一种能够准确检测和定位脑电图中睡眠纺锤波和K复合波的深度学习模型 脑电图中的睡眠纺锤波和K复合波 机器学习 NA 深度学习 CNN 图像 NA
9943 2024-12-25
Joint extraction of entity and relation based on fine-tuning BERT for long biomedical literatures
2024, Bioinformatics advances IF:2.4Q2
研究论文 本文提出了一种基于BERT微调的联合提取实体和关系的模型,用于从长篇生物医学文献中自动提取实体及其关系 模型结合了BERT文本分类预训练模型、图卷积网络学习方法、自混合训练以对抗文本标签噪声以及局部正则化条件随机场等多种先进深度学习技术,实现了跨句子和句子内实体和关系的提取 NA 促进生物医学研究进展,自动从大量生物医学文献中提取实体及其关系 长篇生物医学文献中的实体及其关系 自然语言处理 NA BERT微调、图卷积网络、自混合训练、局部正则化条件随机场 BERT、图卷积网络 文本 自建的BM_GBD数据集和公开数据集
9944 2024-12-25
Automated pediatric brain tumor imaging assessment tool from CBTN: Enhancing suprasellar region inclusion and managing limited data with deep learning
2024 Jan-Dec, Neuro-oncology advances IF:3.7Q2
研究论文 本文提出了一种基于深度学习的自动化工具,用于评估儿童脑肿瘤的影像,特别关注鞍上区域的包含和在有限数据情况下的处理 本文的创新点在于提出了基于nnU-Net的深度学习模型,用于颅骨剥离和肿瘤分割,特别是在鞍上区域的处理和有限数据情况下的适应性 本文的局限性在于其模型在罕见肿瘤和真实世界临床数据中的泛化能力仍有待验证 本文的研究目的是开发一种自动化的颅骨剥离和肿瘤分割工具,以提高儿童脑肿瘤监测的准确性 本文的研究对象是儿童脑肿瘤的多机构、多参数MRI扫描数据 计算机视觉 脑肿瘤 深度学习 nnU-Net 影像 527名儿童患者的多参数MRI扫描数据,其中336名用于颅骨剥离,489名用于肿瘤分割
9945 2024-12-25
High-throughput platform for label-free sorting of 3D spheroids using deep learning
2024, Frontiers in bioengineering and biotechnology IF:4.3Q2
研究论文 本文介绍了一种基于深度学习的高通量无标签3D球状体分选平台,用于组织工程中的标准化和可扩展组织制造 首次引入了一种全自动平台,通过无标签的明场图像分析进行高通量3D球状体分选,并展示了迁移学习在生物学应用中的有效性 本文未提及该平台在其他类型组织或器官中的应用效果 开发一种高通量、无标签的3D球状体分选平台,以推动组织工程和再生医学的发展 3D球状体,特别是单细胞和多细胞肝脏球状体 机器学习 NA 深度学习 NA 图像 未具体说明样本数量
9946 2024-12-25
Discrimination of leaf diseases in Maize/Soybean intercropping system based on hyperspectral imaging
2024, Frontiers in plant science IF:4.1Q1
研究论文 本研究利用高光谱成像和深度学习算法对玉米/大豆间作系统中的叶片病害进行分类 本研究首次将高光谱成像与传统和深度学习方法相结合,提出了一种基于CARS特征提取和DBO-BiLSTM模型的病害分类方法,显著提高了分类准确率 本研究的样本量较小,且仅针对玉米和大豆的叶片病害进行分类,未来研究可扩展到更多作物和病害类型 实现玉米/大豆间作系统中叶片病害的精确分类 玉米和大豆的叶片病害,包括叶斑病、锈病和混合病害 计算机视觉 NA 高光谱成像 双向长短期记忆网络(BiLSTM) 图像 NA
9947 2024-12-25
Deep Learning-Based Visual Complexity Analysis of Electroencephalography Time-Frequency Images: Can It Localize the Epileptogenic Zone in the Brain?
2023-Dec, Algorithms IF:1.8Q2
研究论文 本文提出了一种基于深度学习的视觉复杂度分析方法,用于解释从颅内脑电图(iEEG)数据中提取的时间-频率(TF)图像,并评估其识别大脑癫痫灶(EZ)的能力 本文创新性地使用预训练的VGG16网络从13个卷积层中提取无监督激活能量(UAE),并通过支持向量机分类器识别大脑中的兴趣点,从而实现对癫痫灶的定位 本文仅分析了20名儿童的颅内脑电图数据,样本量较小,可能限制了结果的普适性 评估基于深度学习的视觉复杂度分析方法在识别大脑癫痫灶中的应用 颅内脑电图(iEEG)信号及其时间-频率图像 计算机视觉 癫痫 深度学习 VGG16 图像 1928个接触点,来自20名患有药物难治性癫痫的儿童
9948 2024-12-25
Concurrent Ischemic Lesion Age Estimation and Segmentation of CT Brain Using a Transformer-Based Network
2023-12, IEEE transactions on medical imaging IF:8.9Q1
研究论文 本文提出了一种基于Transformer的多任务网络,用于同时进行脑CT图像中的缺血性病变分割和年龄估计 首次将深度学习应用于同时进行病变年龄估计和分割,利用了两者之间的互补关系,并引入了门控位置自注意力和CT特定数据增强技术 实验仅在两个医疗中心的776张CT图像上进行评估,样本量相对较小 开发一种能够同时进行脑CT图像中缺血性病变分割和年龄估计的自动化方法,以辅助临床决策 脑CT图像中的缺血性病变 计算机视觉 中风 Transformer网络 Transformer 图像 776张脑CT图像
9949 2024-12-25
Artifact Detection and Restoration in Histology Images With Stain-Style and Structural Preservation
2023-12, IEEE transactions on medical imaging IF:8.9Q1
研究论文 本文提出了一种用于组织学图像中伪影检测和修复的预处理框架,旨在减少伪影对下游AI诊断任务的影响 本文的创新点在于提出了一个系统化的预处理框架,能够自动检测和修复组织学图像中的伪影,并保留染色风格和组织结构 NA 减少组织学图像中伪影对AI诊断任务的影响,提高自动化程度 组织学图像中的伪影检测和修复 数字病理学 结直肠癌、乳腺癌 NA AR-Classifier、AR-CycleGAN 图像 临床收集的全切片图像(WSIs)和公开的结直肠癌、乳腺癌数据集
9950 2024-12-25
Equilibrated Zeroth-Order Unrolled Deep Network for Parallel MR Imaging
2023-12, IEEE transactions on medical imaging IF:8.9Q1
研究论文 本文提出了一种用于并行磁共振成像的零阶展开深度网络方法 本文创新性地提出了一个保护性的网络展开方法,通过将零阶算法展开,使网络模块本身作为正则化器,确保网络输出符合正则化模型,并证明了网络在噪声干扰下的鲁棒性 目前缺乏理论保证展开网络的全局收敛性和鲁棒性 解决现有展开网络在理论上的不足,提出一种新的展开方法以提高并行磁共振成像的性能 并行磁共振成像中的图像重建 机器学习 NA 深度学习 深度网络 图像 NA
9951 2024-12-24
Can temporomandibular joint osteoarthritis be diagnosed on MRI proton density-weighted images with diagnostic support from the latest deep learning classification models?
2025-Jan-01, Dento maxillo facial radiology
研究论文 本研究旨在评估基于MRI的深度学习分类模型在诊断颞下颌关节骨关节炎(TMJ-OA)中的表现,并与人类观察者的诊断能力进行比较 本研究首次使用ResNet18、EfficientNet b4、Inception v3和GoogLeNet四种深度学习网络模型,通过5折交叉验证对MRI质子密度加权图像进行分类,评估其在TMJ-OA诊断中的性能 本研究的样本量相对较小,且仅限于MRI质子密度加权图像,可能限制了模型的泛化能力 评估深度学习模型在MRI诊断颞下颌关节骨关节炎中的表现 颞下颌关节骨关节炎(TMJ-OA)的MRI图像 机器学习 颞下颌关节疾病 深度学习 ResNet18, EfficientNet b4, Inception v3, GoogLeNet 图像 200个颞下颌关节(100个TMJ-OA,100个非TMJ-OA)
9952 2024-12-24
Clinical Validation of a Deep Learning Algorithm for Automated Coronary Artery Disease Detection and Classification Using a Heterogeneous Multivendor Coronary Computed Tomography Angiography Data Set
2025-Jan-01, Journal of thoracic imaging IF:2.0Q3
研究论文 本文验证了一种全自动深度学习算法在异构多厂商心脏CT血管造影数据集中检测和分类冠状动脉疾病的能力 本文首次在异构多厂商数据集中验证了深度学习算法在冠状动脉疾病检测和分类中的应用 本文仅在单一中心的回顾性研究中验证了算法,未来需要在更多中心和前瞻性研究中进一步验证 验证一种全自动深度学习算法在冠状动脉疾病检测和分类中的临床应用 冠状动脉疾病在异构多厂商心脏CT血管造影数据集中的检测和分类 计算机视觉 心血管疾病 深度学习 深度学习算法 图像 296名患者
9953 2024-12-24
Development and validation of a CT-based deep learning radiomics signature to predict lymph node metastasis in oropharyngeal squamous cell carcinoma: a multicentre study
2025-Jan-01, Dento maxillo facial radiology
研究论文 本研究开发并验证了一种基于CT的深度学习放射组学签名,用于预测口咽鳞状细胞癌中的淋巴结转移 本研究提出了一种结合临床因素与深度学习放射组学的新型综合模型,显著提高了口咽鳞状细胞癌术前淋巴结转移的预测能力 NA 建立并验证一种深度学习放射组学模型,用于预测口咽鳞状细胞癌中的淋巴结转移 口咽鳞状细胞癌患者的淋巴结转移 数字病理学 口咽癌 深度学习 机器学习分类器 图像 279名口咽鳞状细胞癌患者
9954 2024-12-24
Deep Learning for Distinguishing Mucinous Breast Carcinoma From Fibroadenoma on Ultrasound
2025-Jan, Clinical breast cancer IF:2.9Q2
研究论文 本研究旨在开发一种深度学习模型,通过超声图像区分粘液性乳腺癌和纤维腺瘤 提出了基于超声图像和年龄的DL+ age-tree模型,显著提高了区分粘液性乳腺癌和纤维腺瘤的诊断性能,并能有效提升不同经验水平放射科医生的诊断能力 本研究为回顾性研究,样本量相对较小,可能存在选择偏倚 开发一种深度学习模型,帮助放射科医生更准确地区分粘液性乳腺癌和纤维腺瘤 粘液性乳腺癌和纤维腺瘤的超声图像 计算机视觉 乳腺癌 深度学习 DL+ age-tree模型 图像 884名患者,包括700名纤维腺瘤患者和184名粘液性乳腺癌患者,共2257张超声图像
9955 2024-12-24
How the technologies behind self-driving cars, social networks, ChatGPT, and DALL-E2 are changing structural biology
2025-Jan, BioEssays : news and reviews in molecular, cellular and developmental biology IF:3.2Q1
综述 本文综述了深度学习技术在蛋白质结构生物学中的应用,包括卷积神经网络、大型语言模型、去噪扩散概率模型/噪声条件得分网络和图神经网络 探讨了将自动驾驶汽车、社交网络、ChatGPT和DALL-E2等技术背后的深度学习工具应用于蛋白质结构生物学的新方法 NA 介绍深度学习技术在蛋白质结构预测、逆折叠、蛋白质设计和小分子设计中的进展 蛋白质结构生物学 机器学习 NA 深度神经网络 卷积神经网络、大型语言模型、去噪扩散概率模型/噪声条件得分网络、图神经网络 文本、图像、图 NA
9956 2024-12-23
Unveiling AI's role in papilledema diagnosis from fundus images: A systematic review with diagnostic test accuracy meta-analysis and comparison of human expert performance
2025-Jan, Computers in biology and medicine IF:7.0Q1
综述 本文系统回顾了人工智能在视网膜图像中检测和分级视乳头水肿的应用,并进行了诊断测试准确性的meta分析,同时比较了人类专家的表现 深度学习模型在检测视乳头水肿方面优于传统的机器学习算法,且在某些情况下超越了人类专家的敏感性 研究存在患者选择、图像来源和异质性等方面的局限性 探讨人工智能在视乳头水肿诊断中的应用及其与人类专家的比较 视乳头水肿的检测和分级 计算机视觉 眼科疾病 深度学习 深度学习模型 图像 21项研究
9957 2024-12-24
Automated tooth segmentation in magnetic resonance scans using deep learning - A pilot study
2025-Jan-01, Dento maxillo facial radiology
研究论文 本研究开发并评估了一种用于磁共振扫描中牙齿分割的人工智能模型 首次使用深度学习技术在磁共振扫描中实现牙齿的自动分割 模型在包含牙科修复体的数据集上准确性较低,由于图像伪影的影响 开发和评估一种用于磁共振扫描中牙齿分割的人工智能模型 磁共振扫描中的牙齿分割 计算机视觉 NA 磁共振成像 nnU-Net 图像 20名患者的磁共振扫描数据,其中16个用于模型训练,4个用于准确性评估
9958 2024-12-24
Highly Accurate and Explainable Predictions of Small-Molecule Antioxidants for Eight In Vitro Assays Simultaneously through an Alternating Multitask Learning Strategy
2024-Dec-23, Journal of chemical information and modeling IF:5.6Q1
研究论文 提出了一种基于功能基团的交替多任务自监督分子表示学习方法,用于同时预测八种常用体外抗氧化检测中小分子的抗氧化活性 首次提出了基于功能基团的交替多任务自监督分子表示学习方法,并开发了一个在线抗氧化活性预测平台AOP 未提及具体局限性 开发一种高效且可解释的模型,用于预测小分子抗氧化剂的活性 小分子抗氧化剂及其在八种体外检测中的活性 机器学习 NA 多任务学习 FG-BERT 分子数据 未提及具体样本数量
9959 2024-12-24
Advanced AI-Driven Prediction of Pregnancy-Related Adverse Drug Reactions
2024-Dec-23, Journal of chemical information and modeling IF:5.6Q1
研究论文 本研究开发并验证了基于机器学习和深度学习技术的妊娠相关药物不良反应风险预测模型 本研究首次使用DMPNN模型结合分子图信息和分子描述符,在预测妊娠相关药物不良反应方面表现出最高的预测性能 NA 开发和验证妊娠相关药物不良反应的风险预测模型 妊娠相关药物不良反应 机器学习 NA 机器学习(ML)和深度学习(DL)技术 DMPNN模型、图神经网络、图卷积网络、随机森林、支持向量机、XGBoost 真实世界数据 22种口服降糖药物
9960 2024-12-24
A 4D tensor-enhanced multi-dimensional convolutional neural network for accurate prediction of protein-ligand binding affinity
2024-Dec-23, Molecular diversity IF:3.9Q2
研究论文 本文提出了一种基于4D张量特征的多维卷积神经网络模型,用于准确预测蛋白质-配体结合亲和力 引入了新的4D张量特征来捕捉结合口袋内的关键相互作用,并开发了基于该特征的三维卷积神经网络模型 NA 开发一种高效的蛋白质-配体结合亲和力预测模型 蛋白质-配体结合亲和力 机器学习 NA 卷积神经网络(CNN) 多维卷积神经网络 结构数据 使用了PDBbind v.2020数据集,并进行了十折交叉验证
回到顶部