本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!
除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
10041 | 2024-12-21 |
Assessing and improving the high uncertainty of global gross primary productivity products based on deep learning under extreme climatic conditions
2024-Dec-20, The Science of the total environment
DOI:10.1016/j.scitotenv.2024.177344
PMID:39521074
|
研究论文 | 本研究评估了八种全球总初级生产力(GPP)产品在极端气候条件下的表现,并利用卷积神经网络(CNN)提高了GPP在极端气候条件下的估算精度 | 本研究首次利用卷积神经网络(CNN)基于ECMWF-Reanalysis-5th-Generation(ERA5)气象数据,显著提高了GPP在极端气候条件下的估算精度 | 研究主要集中在极端气候条件下的GPP估算,未涵盖所有气候条件下的表现 | 评估全球GPP产品在极端气候条件下的表现,并提出改进方法 | 八种全球GPP产品在极端气候条件下的表现 | 生态与环境科学 | NA | 卷积神经网络(CNN) | 卷积神经网络(CNN) | 气象数据 | 2003年至2014年的通量塔数据和20个独立验证站点 |
10042 | 2024-12-21 |
Wetland classification based on depth-adaptive convolutional neural networks using leaf-off SAR imagery
2024-Dec-20, The Science of the total environment
DOI:10.1016/j.scitotenv.2024.177768
PMID:39615179
|
研究论文 | 本文开发了一种基于深度自适应卷积神经网络的湿地分类方法,使用落叶期的Sentinel-1 SAR影像和辅助数据 | 提出了基于U-Net架构的深度自适应卷积神经网络,结合多土地覆盖邻近信息和基于CNN的自监督SAR去噪方法,提高了湿地分类的准确性和效率 | NA | 评估深度学习技术在雷达数据上对大规模湿地分类的准确性和效率 | 湿地分类,包括沼泽湿地、灌木湿地、森林湿地和开阔水域 | 计算机视觉 | NA | 深度学习 | 卷积神经网络(CNN) | 图像 | NA |
10043 | 2024-12-21 |
Deep learning model for low-dose CT late iodine enhancement imaging and extracellular volume quantification
2024-Dec-20, European radiology
IF:4.7Q1
DOI:10.1007/s00330-024-11288-0
PMID:39704803
|
研究论文 | 本文开发并验证了两种深度学习模型(RDN和cGAN)用于低剂量CT晚期碘增强成像和细胞外体积定量 | 本文提出的RDN模型在图像质量和信号噪声比方面显著优于cGAN模型和原始图像,提高了视觉分析的可识别性 | NA | 开发和验证深度学习模型,以去噪晚期碘增强图像并实现准确的细胞外体积定量 | 晚期碘增强图像和细胞外体积定量 | 计算机视觉 | 心血管疾病 | 深度学习 | RDN, cGAN | 图像 | 423名患者,分为训练组(182名)、调优组(48名)、内部验证组(92名)和外部验证组(101名) |
10044 | 2024-12-21 |
AI-Enhanced Interface for Colonic Polyp Segmentation Using DeepLabv3+ with Comparative Backbone Analysis
2024-Dec-19, Biomedical physics & engineering express
IF:1.3Q3
DOI:10.1088/2057-1976/ada15f
PMID:39700528
|
研究论文 | 本文提出了一种使用DeepLabv3+模型和ResNet架构进行结肠息肉分割的方法,并通过实验验证了其高准确性 | 本文的创新点在于使用DeepLabv3+模型和ResNet-50作为骨干网络,结合编码器-解码器结构,实现了高精度的结肠息肉分割 | 本文的局限性在于仅使用了Kvasir-SEG数据集进行训练和测试,可能存在数据集偏差问题 | 本文的研究目的是开发一种自动、快速且高精度的结肠息肉分割方法,以辅助结直肠癌的诊断和手术规划 | 本文的研究对象是结肠息肉的分割 | 计算机视觉 | 结直肠癌 | DeepLabv3+ | CNN | 图像 | 使用了Kvasir-SEG数据集进行训练和测试 |
10045 | 2024-12-21 |
A deep learning framework deploying segment anything to detect pan-cancer mitotic figures from haematoxylin and eosin-stained slides
2024-Dec-19, Communications biology
IF:5.2Q1
DOI:10.1038/s42003-024-07398-6
PMID:39702417
|
研究论文 | 本文提出了一种基于人工智能的方法,用于检测苏木精和伊红染色的数字化全切片图像中的有丝分裂象 | 本文创建了最大的有丝分裂象数据集(N=74,620),并提出了一种两阶段框架OMG-Net,该框架结合了Segment Anything Model和改进的ResNet18,显著提高了泛癌有丝分裂象检测的性能 | 本文的局限性在于依赖于现有的公开数据集,可能无法完全覆盖所有癌症类型的有丝分裂象 | 开发一种高效且准确的方法来检测泛癌有丝分裂象,以辅助癌症分级和治疗 | 苏木精和伊红染色的数字化全切片图像中的有丝分裂象 | 数字病理学 | NA | 深度学习 | CNN | 图像 | 74,620个有丝分裂象样本 |
10046 | 2024-12-21 |
Geometric deep learning improves generalizability of MHC-bound peptide predictions
2024-Dec-19, Communications biology
IF:5.2Q1
DOI:10.1038/s42003-024-07292-1
PMID:39702482
|
研究论文 | 本文探讨了利用几何深度学习(GDL)提高MHC结合肽预测的泛化能力 | 本文提出了基于结构的方法,利用几何深度学习(GDL)和三维自监督学习(3D-SSL),显著提高了MHC结合肽预测的泛化能力,并在数据效率上优于传统的基于序列的方法 | 本文未详细讨论GDL方法在其他疾病或免疫相关领域的应用效果 | 提高MHC结合肽预测的泛化能力和数据效率 | MHC分子与肽的相互作用 | 机器学习 | NA | 几何深度学习(GDL) | 几何深度学习模型 | 结构数据(3D) | 未具体说明样本数量,但提到3D-SSL方法在未接触任何结合亲和力数据的情况下表现优异 |
10047 | 2024-12-21 |
Optimising the paradigms of human AI collaborative clinical coding
2024-Dec-19, NPJ digital medicine
IF:12.4Q1
DOI:10.1038/s41746-024-01363-7
PMID:39702575
|
研究论文 | 本研究提出了一种新的人在环(HITL)框架CliniCoCo,旨在优化人机协作的临床编码 | 提出了CliniCoCo框架,通过深度学习能力实现自动化临床编码系统与人类编码员在实际环境中的高效协作 | 未提及具体的局限性 | 优化人机协作的临床编码范式 | 临床编码系统与人类编码员的协作效率 | 机器学习 | NA | 深度学习 | NA | 文本 | 使用了中国医院真实世界的电子病历数据集 |
10048 | 2024-12-21 |
AI-driven system for non-contact continuous nocturnal blood pressure monitoring using fiber optic ballistocardiography
2024-Dec-19, Communications engineering
DOI:10.1038/s44172-024-00326-w
PMID:39702581
|
研究论文 | 本文介绍了一种基于光纤传感技术的非接触式连续夜间血压监测系统 | 该系统利用先进的光纤传感器捕捉医疗级的心冲击图信号,并通过人工智能模型提取深度学习和基准特征,实现了边缘设备上的高效轻量化个性化方案 | NA | 开发一种非侵入性且舒适的夜间血压连续监测系统,以改善高血压管理和心血管风险评估 | 夜间血压监测及其在高血压管理和心血管风险评估中的应用 | 机器学习 | 心血管疾病 | 光纤传感技术 | AI模型 | 信号 | 158名受试者 |
10049 | 2024-12-21 |
HistoPlexer: Histopathology-based Protein Multiplex Generation using Deep Learning
2024-Dec-07, medRxiv : the preprint server for health sciences
DOI:10.1101/2024.01.26.24301803
PMID:39677425
|
研究论文 | 本文介绍了一种基于深度学习的框架HistoPlexer,用于从组织病理学图像直接生成空间解析的蛋白质多重检测 | HistoPlexer采用条件生成对抗网络和自定义损失函数,能够减少切片间的变化并保持蛋白质的空间相关性,在转移性黑色素瘤样本的评估中表现优于现有方法 | NA | 开发一种成本和时间有效的技术,用于从组织病理学图像生成蛋白质多重检测,以更好地理解肿瘤微环境 | 转移性黑色素瘤样本 | 计算机视觉 | 皮肤癌 | 深度学习 | 生成对抗网络 | 图像 | NA |
10050 | 2024-12-21 |
A Deep Learning Network for Accurate Retinal Multidisease Diagnosis Using Multiview Fusion of En Face and B-Scan Images: A Multicenter Study
2024-Dec-02, Translational vision science & technology
IF:2.6Q2
DOI:10.1167/tvst.13.12.31
PMID:39693092
|
研究论文 | 本研究探讨了融合en face和B-scan图像以提高深度学习模型诊断视网膜疾病的效果 | 提出了一个多视角融合网络(MVFN),通过决策融合模块整合快速轴和慢速轴B-scan及en face信息,显著提高了诊断性能 | NA | 研究融合en face和B-scan图像对深度学习模型诊断性能的影响 | 视网膜疾病 | 计算机视觉 | NA | 深度学习 | 多视角融合网络(MVFN) | 图像 | 2330例病例 |
10051 | 2024-12-21 |
Automated deep learning segmentation of cardiac inflammatory FDG PET
2024-Dec, Journal of nuclear cardiology : official publication of the American Society of Nuclear Cardiology
IF:3.0Q2
DOI:10.1016/j.nuclcard.2024.102052
PMID:39368659
|
研究论文 | 本文开发了一种基于3D U-Net深度学习算法的自动化心肌分割工具,用于心脏结节病FDG PET图像的处理 | 本文首次提出了一种基于深度学习的心肌分割方法,显著提高了心脏结节病FDG PET图像的处理效率和准确性 | 本文未详细讨论该方法在其他心脏疾病或不同类型PET图像中的适用性 | 开发一种自动化工具,以提高心脏结节病FDG PET图像的处理效率和准确性 | 心脏结节病患者的FDG PET图像 | 计算机视觉 | 心脏疾病 | 深度学习 | 3D U-Net | 图像 | 316名患者的FDG PET扫描数据 |
10052 | 2024-12-21 |
Discovery of novel Akt1 inhibitors by an ensemble-based virtual screening method, molecular dynamics simulation, and in vitro biological activity testing
2024-Dec, Molecular diversity
IF:3.9Q2
DOI:10.1007/s11030-023-10788-3
PMID:38240951
|
研究论文 | 本文通过基于集成的虚拟筛选方法、分子动力学模拟和体外生物活性测试,发现了一种新的Akt1抑制剂 | 本文提出了一种多层虚拟筛选方法,结合了药效团、3D-QSAR、分子对接和深度学习技术,并发现了具有新骨架的潜在Akt1抑制剂Hit9 | 本文仅对17种化合物进行了体外生物活性测试,未进行体内实验和临床试验 | 发现新的Akt1抑制剂,用于治疗Akt1过表达的多种癌症 | Akt1抑制剂及其与Akt1的相互作用 | 药物发现 | 癌症 | 虚拟筛选、分子动力学模拟、体外生物活性测试 | 深度学习 | 化合物 | 17种不同骨架的化合物 |
10053 | 2024-12-21 |
First report on chemometrics-driven multilayered lead prioritization in addressing oxysterol-mediated overexpression of G protein-coupled receptor 183
2024-Dec, Molecular diversity
IF:3.9Q2
DOI:10.1007/s11030-024-10811-1
PMID:38460065
|
研究论文 | 本文首次报道了通过化学计量学驱动的多层级优先级排序方法,筛选潜在的G蛋白偶联受体183(GPR183)抑制剂,以应对氧化固醇介导的GPR183过度表达 | 本文开发了一种基于遗传算法(GA)和多元线性回归(MLR)的二维定量构效关系(QSAR)模型,并结合分子对接、药物相似性、ADMET评估、蛋白质-配体稳定性评估等技术,筛选出潜在的GPR183抑制剂 | 本文的研究结果需要进一步的体外和体内验证 | 旨在通过计算方法筛选潜在的GPR183抑制剂,以应对氧化固醇介导的GPR183过度表达 | G蛋白偶联受体183(GPR183)及其抑制剂 | 药物筛选 | 癌症、糖尿病、多发性硬化症、感染性疾病和炎症性疾病 | 定量构效关系(QSAR)、分子对接、分子动力学、分子力学 | 多元线性回归(MLR) | 化合物数据 | 12,449个DrugBank化合物 |
10054 | 2024-12-21 |
Bayesian unsupervised clustering identifies clinically relevant osteosarcoma subtypes
2024-Nov-22, Briefings in bioinformatics
IF:6.8Q1
DOI:10.1093/bib/bbae665
PMID:39701601
|
研究论文 | 本文使用贝叶斯无监督聚类方法,通过潜在过程分解(LPD)模型对骨肉瘤进行亚型分类,并验证了其临床相关性 | 本文采用了更复杂的无监督贝叶斯模型LPD,能够处理个体癌症样本的异质性,并解析转录组数据的结构,提供临床相关信息 | NA | 识别癌症亚型,为精准医学的发展提供支持 | 骨肉瘤的亚型分类 | 机器学习 | 骨肉瘤 | RNA测序(RNA-seq) | 潜在过程分解(LPD) | 转录组数据 | NA |
10055 | 2024-12-21 |
Detection of hate: speech tweets based convolutional neural network and machine learning algorithms
2024-11-21, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-024-76632-2
PMID:39572576
|
研究论文 | 本文讨论了使用基于TF-IDF的特征工程方法,结合多种机器学习和深度学习分类器,自动识别社交媒体上的仇恨言论 | 本文创新性地结合了多种机器学习和深度学习算法,包括卷积神经网络(CNN),以提高仇恨言论检测的准确性 | 本文未详细讨论数据集的多样性和可能的偏差问题 | 研究目的是解决社交媒体上仇恨言论的自动识别问题 | 研究对象是社交媒体上的仇恨言论推文 | 机器学习 | NA | TF-IDF | CNN | 文本 | 使用了三个不同的数据集,包括'Hate speech offensive tweets by Davidson et al.'、'Twitter hate speech'以及合并后的'Cyberbullying dataset (toxicity_parsed_dataset)' |
10056 | 2024-12-21 |
A review of multimodal deep learning methods for genomic-enabled prediction in plant breeding
2024-Nov-05, Genetics
IF:3.3Q2
DOI:10.1093/genetics/iyae161
PMID:39499217
|
综述 | 本文综述了多模态深度学习方法在植物育种基因组预测中的应用 | 多模态深度学习方法通过引入多种输入信息源,提升了传统单模态深度学习的预测能力,能够更有效地捕捉不同模态之间的交互 | 多模态深度学习需要更多的计算资源,且在应用时需要选择合适的架构和融合策略 | 探讨多模态深度学习在植物育种基因组选择中的应用潜力,并提供相关理论基础和实践指导 | 多模态深度学习方法及其在植物育种中的应用 | 机器学习 | NA | 多模态深度学习 | 神经网络 | 基因组数据 | NA |
10057 | 2024-12-21 |
Deep learning classification of pediatric spinal radiographs for use in large scale imaging registries
2024-Nov, Spine deformity
IF:1.6Q3
DOI:10.1007/s43390-024-00933-9
PMID:39039392
|
研究论文 | 本研究开发并应用了一种自动分类小儿脊柱X光片的算法 | 使用EfficientNet B6架构的深度学习分类器,能够高精度地区分10种术前和术后脊柱X光片类别 | 在数据集中少于100张图片的类别上表现较低 | 开发一种自动分类小儿脊柱X光片的算法,用于大规模影像注册 | 小儿脊柱侧弯患者的脊柱X光片 | 计算机视觉 | 脊柱侧弯 | 深度学习 | 卷积神经网络 | 图像 | 7777张AP图像和5621张侧位图像 |
10058 | 2024-12-21 |
Contrastive machine learning reveals Parkinson's disease specific features associated with disease severity and progression
2024-08-07, Communications biology
IF:5.2Q1
DOI:10.1038/s42003-024-06648-x
PMID:39112797
|
研究论文 | 本研究使用对比深度学习方法分析了932名帕金森病患者和366名对照组的磁共振成像数据,揭示了与疾病严重程度和进展相关的帕金森病特异性神经解剖学改变 | 本研究首次使用对比深度学习方法分析帕金森病患者的MRI数据,揭示了与疾病严重程度和进展相关的特异性神经解剖学改变,并发现了与免疫功能相关的脑脊液蛋白 | 本研究仅分析了MRI数据,未涉及其他类型的生物标志物或数据 | 揭示帕金森病特异性神经解剖学改变与疾病严重程度和进展的关系 | 932名帕金森病患者和366名对照组的磁共振成像数据 | 机器学习 | 帕金森病 | 对比深度学习 | NA | 图像 | 932名帕金森病患者和366名对照组 |
10059 | 2024-12-21 |
Differentially localized protein identification for breast cancer based on deep learning in immunohistochemical images
2024-08-02, Communications biology
IF:5.2Q1
DOI:10.1038/s42003-024-06548-0
PMID:39095659
|
研究论文 | 本文基于深度学习框架,利用乳腺免疫组化图像的特征构建定位预测模型,识别出与乳腺癌相关的差异定位蛋白 | 本文首次通过深度学习方法从免疫组化图像中识别出六个具有稳定差异定位的蛋白,并揭示了这些蛋白与乳腺癌的密切关联 | 本文未详细探讨这些差异定位蛋白的具体分子机制及其在乳腺癌中的具体作用 | 识别与乳腺癌相关的差异定位蛋白,揭示其潜在的分子机制,并为乳腺癌的早期诊断和治疗提供帮助 | 乳腺免疫组化图像中的差异定位蛋白 | 数字病理学 | 乳腺癌 | 深度学习 | NA | 图像 | 未明确说明具体样本数量 |
10060 | 2024-12-21 |
Deep learning analysis for differential diagnosis and risk classification of gastrointestinal tumors
2024-08, Scandinavian journal of gastroenterology
IF:1.6Q3
DOI:10.1080/00365521.2024.2368241
PMID:38950889
|
研究论文 | 本研究使用基于深度学习的计算机辅助诊断系统(EUS-CAD)分析内镜超声(EUS)图像,评估其区分胃肠道间质瘤(GISTs)与其他间质瘤及其风险分类的能力 | 首次将人工智能应用于内镜超声图像的分析,并成功展示了GIST风险分类的可行性 | 研究样本量较小,且仅限于肌肉层来源的亚上皮病变 | 评估基于深度学习的计算机辅助诊断系统在内镜超声图像中区分胃肠道间质瘤与其他间质瘤及其风险分类的能力 | 胃肠道间质瘤(GISTs)与其他间质瘤的区分及其风险分类 | 计算机视觉 | 胃肠道肿瘤 | 深度学习分析 | NA | 图像 | 101例经病理证实的肌肉层来源的亚上皮病变,包括69例GISTs、17例平滑肌瘤和15例神经鞘瘤 |