本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!
除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1001 | 2025-04-24 |
Prediction of Inter-Residue Multiple Distances and Exploration of Protein Multiple Conformations by Deep Learning
2024 Nov-Dec, IEEE/ACM transactions on computational biology and bioinformatics
DOI:10.1109/TCBB.2024.3411825
PMID:38857126
|
研究论文 | 本研究提出了一种基于深度学习的残基间多距离预测方法DeepMDisPre,用于探索蛋白质的多构象 | 结合了三角形更新、轴向注意力和ResNet的改进网络来预测残基对的多种距离 | 仅在114个具有多构象的蛋白质上进行了测试,样本量有限 | 预测残基间多距离并探索蛋白质多构象 | 蛋白质的残基间距离和构象 | 机器学习 | NA | 深度学习 | 改进的神经网络(结合三角形更新、轴向注意力和ResNet) | 蛋白质结构数据 | 114个具有多构象的蛋白质和279个具有单一结构的蛋白质 |
1002 | 2025-04-24 |
Hardware-Independent Deep Signal Processing: A Feasibility Study in Echocardiography
2024-Nov, IEEE transactions on ultrasonics, ferroelectrics, and frequency control
DOI:10.1109/TUFFC.2024.3404622
PMID:38781056
|
research paper | 本研究探讨了深度学习模型在超声信号处理中的硬件独立性,特别是在超声心动图中的应用 | 提出了一种轻量级深度学习模型,能够复制高端超声系统的信号处理链,并展示了其在不同探头和低端系统中的应用潜力 | 研究仅基于有限的数据集(30,000帧心脏图像)和特定超声系统(GE HealthCare Vivid E95)进行验证 | 探索深度学习模型在超声信号处理中的硬件独立性及其在不同超声系统间的可移植性 | 超声心动图的信号处理链及图像质量 | 数字病理学 | 心血管疾病 | 深度学习 | DNN | 图像 | 30,000帧心脏图像(来自GE HealthCare Vivid E95系统)和15名患者的约3,000帧测试图像 |
1003 | 2025-04-24 |
Automatic 3-D Lamina Curve Extraction From Freehand 3-D Ultrasound Data Using Sequential Localization Recurrent Convolutional Networks
2024-Nov, IEEE transactions on ultrasonics, ferroelectrics, and frequency control
DOI:10.1109/TUFFC.2024.3385698
PMID:38578857
|
研究论文 | 本文提出了一种名为SL-RCN的新型深度学习模型,用于从自由手3-D超声数据中自动提取3-D椎板曲线 | SL-RCN模型考虑了上下文关系,并嵌入变换矩阵特征作为3-D知识库,以提高超声序列分析的准确性 | 研究仅涉及10名健康成年人的数据,样本量较小 | 开发一种能够准确提取3-D椎板曲线的深度学习模型,用于脊柱检查 | 自由手3-D超声数据中的椎板标志点 | 计算机视觉 | NA | 3-D超声成像 | SL-RCN(顺序定位循环卷积网络) | 3-D超声序列 | 10名健康成年人的腰椎和胸椎区域数据 |
1004 | 2025-04-24 |
Automatic Segmentation of Abdominal Aortic Aneurysms From Time-Resolved 3-D Ultrasound Images Using Deep Learning
2024-Nov, IEEE transactions on ultrasonics, ferroelectrics, and frequency control
DOI:10.1109/TUFFC.2024.3389553
PMID:38619942
|
研究论文 | 本研究提出并验证了一种基于深度学习的自动分割方法,用于从时间分辨3D超声图像中分割腹主动脉瘤 | 开发了一种优于传统非深度学习方法的自动分割算法,提高了分割性能 | 未明确提及具体局限性 | 开发一种自动分割腹主动脉瘤的算法,以改进当前临床实践中的破裂风险评估 | 腹主动脉瘤(AAAs) | 数字病理学 | 心血管疾病 | 时间分辨3D超声(3-D + t US) | 深度学习模型(未具体说明类型) | 3D超声图像 | 500名患者的2495张3D + t US图像 |
1005 | 2025-04-24 |
Spatiotemporal Deep Learning-Based Cine Loop Quality Filter for Handheld Point-of-Care Echocardiography
2024-Nov, IEEE transactions on ultrasonics, ferroelectrics, and frequency control
DOI:10.1109/TUFFC.2024.3396796
PMID:38700961
|
研究论文 | 本文开发并验证了一种基于时空深度学习的模型,用于评估手持式即时超声心动图设备采集的超声电影循环数据是否适合自动量化算法处理 | 提出三种不同的神经网络架构,包括帧级CNN、单流序列级CNN和双流序列级CNN,用于评估超声电影循环的质量,并证明VectorCNN + LSTM模型能有效利用时空信息提高自动EF估计的可靠性 | 研究仅基于175名患者的数据,可能需要在更大规模的数据集上进行验证 | 开发一种深度学习模型,用于评估手持式即时超声心动图采集的数据质量,以提高自动图像解释的可靠性 | 手持式即时超声心动图设备采集的DICOM电影循环数据 | 数字病理 | 心血管疾病 | 深度学习 | CNN, LSTM | 图像 | 175名患者的DICOM电影循环数据,测试数据集包含76个DICOM电影循环和16,914帧图像 |
1006 | 2025-04-24 |
Development and Evaluation of a Learning-Based Model for Real-Time Haptic Texture Rendering
2024 Oct-Dec, IEEE transactions on haptics
IF:2.4Q2
DOI:10.1109/TOH.2024.3382258
PMID:38536688
|
研究论文 | 本文开发并评估了一种基于学习的实时触觉纹理渲染模型,用于增强虚拟现实环境中的触觉体验 | 提出了一种统一的深度学习模型,能够实时渲染多种纹理,无需为每种纹理单独训练模型,提高了可扩展性 | 研究仅使用了GelSight触觉传感器的数据,可能不适用于其他类型的触觉传感器 | 开发一种能够实时渲染多种触觉纹理的模型,提升虚拟现实环境的触觉体验 | 虚拟现实环境中的触觉纹理渲染 | 机器学习 | NA | 深度学习 | action-conditional模型 | 触觉传感器数据 | 通过多部分人类用户研究进行评估 |
1007 | 2025-04-24 |
Reconstructing Cancellous Bone From Down-Sampled Optical-Resolution Photoacoustic Microscopy Images With Deep Learning
2024-09, Ultrasound in medicine & biology
|
研究论文 | 本研究提出了一种名为PADA U-Net的深度学习模型,用于从欠采样的光学分辨率光声显微镜图像中重建完整的骨组织图像 | 提出PADA U-Net模型,突破成像速度与空间分辨率之间的权衡 | NA | 提高光学分辨率光声显微镜图像质量,同时不牺牲时间分辨率 | 牛松质骨样本 | 数字病理学 | 骨疾病 | 光学分辨率光声显微镜(OR-PAM) | PADA U-Net | 图像 | 牛松质骨测试集 |
1008 | 2025-04-24 |
A Semi-supervised Four-Chamber Echocardiographic Video Segmentation Algorithm Based on Multilevel Edge Perception and Calibration Fusion
2024-09, Ultrasound in medicine & biology
|
research paper | 提出一种基于多级边缘感知和校准融合的半监督四腔心超声视频分割算法,以提高心内膜分割的准确性 | 引入了多级边缘感知模块和校准融合模块,结合半监督学习,有效解决了超声视频中的边缘模糊和特征融合问题 | 未提及具体的数据集规模和多样性限制,可能影响模型的泛化能力 | 提高心内膜的自动语义分割准确性,辅助心脏疾病诊断 | 超声心动图视频中的心内膜 | digital pathology | cardiovascular disease | deep learning | semi-supervised network | video | 两个公共超声心动图视频数据集和一个本地医院临床数据集 |
1009 | 2025-04-24 |
Automatic Segmentation for Analysis of Murine Cardiac Ultrasound and Photoacoustic Image Data Using Deep Learning
2024-08, Ultrasound in medicine & biology
|
研究论文 | 利用深度学习技术自动分割小鼠心脏超声和光声图像数据以进行分析 | 结合超声和光声成像,使用U-Net深度神经网络进行分割,提高了前壁左心室区域的分割效率和准确性 | 研究仅针对小鼠图像数据集,未涉及人类或其他动物模型 | 改进心脏超声和光声图像的分割方法,以量化应变和氧饱和度 | 小鼠心脏的超声和光声图像 | 计算机视觉 | 心血管疾病 | 超声成像(US)和光声成像(PA) | U-Net | 图像 | 小鼠图像数据集(具体数量未提及) |
1010 | 2025-04-24 |
A Deep Learning Model for Automatically Quantifying the Anterior Segment in Ultrasound Biomicroscopy Images of Implantable Collamer Lens Candidates
2024-08, Ultrasound in medicine & biology
|
research paper | 本研究开发并评估了一种基于深度学习的模型,用于自动测量植入式Collamer镜片(ICL)手术候选者术前超声生物显微镜(UBM)图像中的前段(AS)参数 | 利用UNet++网络自动分割AS组织,并结合图像处理技术和几何定位算法自动识别瞳孔直径(PD)、前房深度(ACD)、角到角距离(ATA)和沟到沟距离(STS)等解剖标志(ALs) | 研究仅使用了来自两个医疗中心的UBM图像,可能限制了模型的泛化能力 | 开发一种能够自动测量ICL手术候选者前段参数的深度学习模型 | 植入式Collamer镜片(ICL)手术候选者的术前超声生物显微镜(UBM)图像 | digital pathology | 眼科疾病 | 超声生物显微镜(UBM) | UNet++ | image | 1164张全景UBM图像来自321名患者,外加294张来自外部数据集的图像 |
1011 | 2025-04-24 |
Integrated Fibrous Iontronic Pressure Sensors with High Sensitivity and Reliability for Human Plantar Pressure and Gait Analysis
2024-06-04, ACS nano
IF:15.8Q1
DOI:10.1021/acsnano.4c02919
PMID:38760182
|
research paper | 开发了一种高灵敏度和可靠性的集成纤维离子压力传感器,用于人体足底压力和步态分析 | 采用高模量多孔层压离子纤维结构和统一聚酰亚胺材料系统,具有高灵敏度(156.6 kPa)、广泛感应范围(高达4000 kPa)和增强的界面韧性和耐久性(超过150,000次循环) | 当前柔性传感器的有效性受到结构可变形性限制、多功能层之间的机械不兼容性以及复杂应力条件下的不稳定性等挑战的阻碍 | 开发一种用于足底压力和步态分析的柔性压力传感器,确保长期稳定性和准确性 | 人体足底压力和步态 | 柔性电子 | 足部疾病 | 离子压力传感技术 | 深度学习 | 压力分布数据 | NA |
1012 | 2025-04-24 |
Deciphering the Coevolutionary Dynamics of L2 β-Lactamases via Deep Learning
2024-05-13, Journal of chemical information and modeling
IF:5.6Q1
DOI:10.1021/acs.jcim.4c00189
PMID:38687957
|
research paper | 该研究利用深度学习方法探索L2 β-内酰胺酶的共进化动力学及其在抗菌素耐药性中的作用 | 结合自适应采样分子动力学模拟和深度学习方法(卷积变分自编码器和BindSiteS-CNN)研究L2 β-内酰胺酶的构象变化和相关性 | 研究仅关注了L2 β-内酰胺酶家族及部分代表性的A类酶,未涵盖所有相关酶类 | 理解L2 β-内酰胺酶的共进化动力学及其在抗菌素耐药性中的功能机制 | L2 β-内酰胺酶家族及其他代表性A类酶(如SME-1和KPC-2) | machine learning | NA | 自适应采样分子动力学模拟,深度学习方法 | 卷积变分自编码器,BindSiteS-CNN | 分子动力学模拟数据 | NA |
1013 | 2025-04-24 |
DEBFold: Computational Identification of RNA Secondary Structures for Sequences across Structural Families Using Deep Learning
2024-05-13, Journal of chemical information and modeling
IF:5.6Q1
DOI:10.1021/acs.jcim.4c00458
PMID:38648189
|
研究论文 | DEBFold是一种基于深度学习的RNA二级结构预测工具,通过卷积编码/解码和自注意力机制增强现有热力学结构模型 | 提出了一种两阶段的RNA结构预测策略DEBFold,结合卷积编码/解码和自注意力机制,提高了跨结构家族序列的预测性能 | 未提及具体的数据集规模限制或模型在其他类型RNA上的表现 | 开发一种能够跨结构家族预测RNA二级结构的深度学习工具 | RNA序列及其二级结构 | 生物信息学 | NA | 深度学习 | CNN, 自注意力机制 | RNA序列数据 | 未明确提及具体样本量,但使用了家族保留测试集和PDB衍生的测试集 |
1014 | 2025-04-24 |
Image2InChI: Automated Molecular Optical Image Recognition
2024-05-13, Journal of chemical information and modeling
IF:5.6Q1
DOI:10.1021/acs.jcim.3c02082
PMID:38359459
|
研究论文 | 本文提出了一种基于深度学习的自动化分子光学图像识别模型Image2InChI,用于将分子图像高效自动转换为机器可读的表示 | 引入了新颖的特征融合网络,结合注意力机制整合图像块和InChI预测,并采用改进的SwinTransformer作为编码器和Transformer解码器作为解码器 | NA | 提高分子图像识别的准确性和效率,为药物发现中的人工智能提供支持 | 分子光学图像 | 计算机视觉 | NA | 深度学习 | SwinTransformer, Transformer | 图像 | NA |
1015 | 2025-04-24 |
Intramolecular and Water Mediated Tautomerism of Solvated Glycine
2024-05-13, Journal of chemical information and modeling
IF:5.6Q1
DOI:10.1021/acs.jcim.4c00273
PMID:38620066
|
research paper | 研究了水溶液中甘氨酸的互变异构现象及其溶剂效应 | 利用基于深度学习的增强采样分子动力学方法,揭示了甘氨酸在水中的中性态和两性离子态之间的互变异构机制 | NA | 探究甘氨酸在水溶液中的互变异构现象及溶剂效应 | 甘氨酸分子在水溶液中的互变异构过程 | 计算化学 | NA | 增强采样分子动力学,深度学习势能面 | 深度学习势能模型 | 分子动力学模拟数据 | NA |
1016 | 2025-04-24 |
MMSyn: A New Multimodal Deep Learning Framework for Enhanced Prediction of Synergistic Drug Combinations
2024-05-13, Journal of chemical information and modeling
IF:5.6Q1
DOI:10.1021/acs.jcim.4c00165
PMID:38676916
|
研究论文 | 提出了一种名为MMSyn的多模态深度学习框架,用于预测协同药物组合 | 结合药物分子特征和癌细胞系数据,使用注意力机制和交互模块进行特征整合,提出新的多模态深度学习框架 | 未提及具体样本量大小和模型在真实临床应用中的表现 | 开发一种预测协同药物组合的计算方法 | 药物组合和癌细胞系 | 机器学习 | 癌症 | 深度学习 | 多层感知机(MLP)结合注意力机制 | 分子结构数据、基因表达数据、DNA拷贝数、通路活性数据 | NA |
1017 | 2025-04-24 |
Sequential Contrastive and Deep Learning Models to Identify Selective Butyrylcholinesterase Inhibitors
2024-04-22, Journal of chemical information and modeling
IF:5.6Q1
DOI:10.1021/acs.jcim.4c00397
PMID:38532612
|
研究论文 | 本研究探讨了多种机器学习策略来识别选择性丁酰胆碱酯酶(BChE)抑制剂,优化了精确度指标 | 比较了最新的监督对比学习(CL)、深度学习(DL)和随机森林(RF)机器学习方法,并采用单模型和序列模型配置来识别BChE选择性的最佳模型 | 仅测试了20种化合物,样本量较小 | 识别选择性BChE抑制剂以用于阿尔茨海默病(AD)的晚期症状治疗 | 丁酰胆碱酯酶(BChE)抑制剂 | 机器学习 | 阿尔茨海默病 | 监督对比学习(CL)、深度学习(DL)、随机森林(RF) | CL、DL、RF | 化合物数据 | 500万种化合物库中的20种测试化合物 |
1018 | 2025-04-24 |
Geneformer: a deep learning model for exploring gene networks
2023-12, Science China. Life sciences
DOI:10.1007/s11427-023-2431-x
PMID:37672186
|
NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
1019 | 2025-04-24 |
Development of Multiscale 3D Residual U-Net to Segment Edematous Adipose Tissue by Leveraging Annotations from Non-Edematous Adipose Tissue
2023-Nov, Proceedings of SPIE--the International Society for Optical Engineering
DOI:10.1117/12.2669719
PMID:40256010
|
研究论文 | 开发了一种多尺度3D残差U-Net模型,用于通过利用非水肿脂肪组织的注释来分割水肿脂肪组织 | 直接从非深度学习的脂肪组织分割方法生成的不准确注释中开发深度学习模型,无需手动注释 | 训练数据中缺乏水肿脂肪组织的异质性,可能影响模型在真实水肿情况下的表现 | 提高脂肪组织在CT扫描中的分割准确性,减少对耗时的手动注释的依赖 | 脂肪组织(包括水肿和非水肿状态) | 数字病理学 | 水肿相关疾病 | 深度学习 | 多尺度3D残差U-Net | CT扫描图像 | 训练集101名患者,测试集14名患者(其中10名为水肿患者) |
1020 | 2025-04-24 |
Pollen analysis using multispectral imaging flow cytometry and deep learning
2021-01, The New phytologist
DOI:10.1111/nph.16882
PMID:32803754
|
研究论文 | 本研究提出了一种结合多光谱成像流式细胞术和深度学习的花粉分析新方法 | 首次将多光谱成像流式细胞术与深度学习结合用于花粉分析,实现了快速测量和高准确度的花粉识别 | 需要建立全面的花粉参考数据库才能充分发挥方法优势 | 开发自动化花粉识别和定量分析方法 | 35种植物物种的花粉 | 计算机视觉 | NA | 多光谱成像流式细胞术 | CNN | 图像 | 426876张花粉图像 |