本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!
除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1001 | 2025-05-24 |
Advanced feature fusion of radiomics and deep learning for accurate detection of wrist fractures on X-ray images
2025-May-20, BMC musculoskeletal disorders
IF:2.2Q3
DOI:10.1186/s12891-025-08733-6
PMID:40394557
|
研究论文 | 本研究开发了一种结合放射组学和深度学习特征的混合诊断框架,用于通过X射线图像准确检测和分类腕部骨折 | 结合放射组学和深度学习特征,提出了一种新的混合诊断框架,显著提高了腕部骨折检测的准确性和可重复性 | 研究仅基于三个医疗中心的数据,可能影响模型的泛化能力 | 开发一种准确且可重复的腕部骨折检测和分类方法 | 腕部骨折的X射线图像 | 计算机视觉 | 骨折 | 放射组学特征提取和深度学习 | autoencoder, XGBoost, CatBoost, Random Forest, Voting Classifier | X射线图像 | 3,537张X射线图像(1,871例骨折和1,666例非骨折) |
1002 | 2025-05-24 |
Mitigating catastrophic forgetting in Multiple sclerosis lesion segmentation using elastic weight consolidation
2025-May-20, NeuroImage. Clinical
DOI:10.1016/j.nicl.2025.103795
PMID:40403421
|
研究论文 | 该研究首次将弹性权重巩固(EWC)应用于多发性硬化(MS)病变分割的领域增量学习,以减少灾难性遗忘 | 首次在MS病变分割的领域增量学习中应用EWC,显著减少了灾难性遗忘,并在少量目标域数据下实现了性能提升 | 研究仅使用了公开数据集和内部数据集进行验证,未涉及更广泛的数据来源 | 解决MS病变分割中深度学习模型的领域适应问题,减少灾难性遗忘 | 多发性硬化(MS)病变的MRI图像分割 | 数字病理 | 多发性硬化 | 弹性权重巩固(EWC),迁移学习(TL) | 3D U-Net | MRI图像 | 公开数据集(WMH2017和Shifts)及内部数据集,少量目标域图像(3-5张) |
1003 | 2025-05-24 |
The regulatory landscape of 5' UTRs in translational control during zebrafish embryogenesis
2025-05-19, Developmental cell
IF:10.7Q1
DOI:10.1016/j.devcel.2024.12.038
PMID:39818206
|
research paper | 该研究通过大规模并行报告分析和多聚体分析,揭示了斑马鱼早期胚胎发育过程中5' UTR在翻译调控中的调控景观 | 首次在发育过程中建立了基于5' UTR的翻译调控定量模型,并开发了深度学习模型DaniO5P来预测5' UTR异构体的活性 | 研究仅针对斑马鱼胚胎发育早期阶段,未涵盖其他发育阶段或物种 | 探究5' UTR在翻译调控中的作用及其在斑马鱼胚胎发育中的动态变化 | 斑马鱼早期胚胎发育过程中的5' UTR序列 | 计算生物学 | NA | 大规模并行报告分析、多聚体分析 | 深度学习模型DaniO5P | 序列数据 | 18,154个5' UTR序列 |
1004 | 2025-05-24 |
Enhancing Transthyretin Binding Affinity Prediction with a Consensus Model: Insights from the Tox24 Challenge
2025-May-19, Chemical research in toxicology
IF:3.7Q2
DOI:10.1021/acs.chemrestox.4c00560
PMID:40285676
|
research paper | 该研究通过整合多种深度学习模型,开发了一个共识模型来预测甲状腺素转运蛋白(TTR)的结合亲和力,并在Tox24挑战赛中取得了良好表现 | 整合了sPhysNet、KANO和GGAP-CPI三种模型,利用不同层次的分子信息(2D拓扑、3D几何和蛋白质-配体相互作用)提升预测准确性,并引入不确定性估计作为预测置信度的衡量标准 | 模型性能仍有提升空间,RMSE虽有所降低但仍存在一定误差 | 提高TTR结合亲和力的预测准确性,以识别潜在的TTR结合物并预测其结合亲和力 | 甲状腺素转运蛋白(TTR)及其与外来化合物的相互作用 | machine learning | NA | 深度学习 | 共识模型(整合sPhysNet、KANO和GGAP-CPI) | 分子信息(2D拓扑、3D几何和蛋白质-配体相互作用) | Tox24挑战赛提供的数据集,具体样本数量未明确说明 |
1005 | 2025-05-24 |
Generative deep learning model assisted multi-objective optimization for wastewater nitrogen to protein conversion by photosynthetic bacteria
2025-May-19, Bioresource technology
IF:9.7Q1
DOI:10.1016/j.biortech.2025.132703
PMID:40398568
|
研究论文 | 本研究利用生成式深度学习模型辅助多目标优化,实现废水氮转化为蛋白质的过程 | 采用生成式深度学习算法(如变分自编码器)生成高质量数据,支持多目标优化,解决了传统方法在氮去除和资源回收平衡方面的难题 | 研究在有限数据条件下进行,可能影响模型的泛化能力 | 优化废水氮去除和蛋白质回收的多目标过程 | 光合细菌(PSB)及其在废水处理中的应用 | 机器学习和环境工程 | NA | 生成式深度学习算法、变分自编码器(VAE)、弹性神经网络(ENN) | VAE, ENN | 实验数据 | 5000个与PSB氮回收相关的生成样本 |
1006 | 2025-05-24 |
An overview of artificial intelligence and machine learning in shoulder surgery
2025-May-19, Clinics in shoulder and elbow
IF:1.8Q2
DOI:10.5397/cise.2025.00185
PMID:40405638
|
review | 本文综述了人工智能和机器学习在肩部手术中的应用及其对临床实践的变革 | 探讨了机器学习在肩关节置换术和肩袖撕裂治疗中的创新应用,包括预测术后结果、并发症及植入物选择 | 面临数据变异性、模型可解释性及临床工作流整合等挑战 | 探索机器学习在肩部手术中的应用及其对临床实践的潜在影响 | 肩关节置换术和肩袖撕裂(RCTs)的管理 | machine learning | shoulder surgery | supervised, unsupervised, and reinforcement learning | XGBoost, neural networks, GAN | magnetic resonance imaging, ultrasound | NA |
1007 | 2025-05-24 |
Deep learning-assisted self-cleaning cellulose colorimetric sensor array for monitoring black tea withering dynamics
2025-May-15, Food chemistry
IF:8.5Q1
DOI:10.1016/j.foodchem.2025.144727
PMID:40403427
|
研究论文 | 本研究提出了一种基于纤维素薄膜的环保型比色传感器阵列,结合深度学习技术,用于监测红茶萎凋过程中的挥发性有机化合物及评估萎凋阶段 | 开发了一种具有自清洁功能的TiO-纤维素薄膜,并通过特定区域功能化提高了湿度抗性,结合LSTM深度学习模型实现了90%的萎凋阶段识别准确率 | 未明确说明传感器在长期使用中的稳定性或在实际生产环境中的适用性 | 开发一种智能、环保的传感器用于监测红茶萎凋过程 | 红茶萎凋过程中的挥发性有机化合物(VOCs) | 传感器技术 | NA | 比色传感器阵列(CSA)、深度学习 | LSTM | 化学传感器数据 | 未明确说明具体样本数量 |
1008 | 2025-05-24 |
Improve robustness to mismatched sampling rate: An alternating deep low-rank approach for exponential function reconstruction and its biomedical magnetic resonance applications
2025-May-15, Journal of magnetic resonance (San Diego, Calif. : 1997)
DOI:10.1016/j.jmr.2025.107898
PMID:40403552
|
research paper | 提出了一种交替深度低秩方法(ADLR),用于解决信号重建中训练与目标数据不匹配的问题 | 结合深度学习求解器和经典优化求解器,有效缓解了信号重建中的不匹配问题 | 未提及具体局限性 | 提高信号重建的鲁棒性,特别是在采样率不匹配的情况下 | 生物医学磁共振信号 | signal processing | NA | deep learning, classic optimization | ADLR (Alternating Deep Low-Rank) | magnetic resonance signals | 合成和真实世界的生物医学磁共振信号 |
1009 | 2025-05-24 |
Comparison of clinical, radiomics, deep learning, and fusion models for predicting early recurrence in locally advanced rectal cancer based on multiparametric MRI: a multicenter study
2025-May-14, European journal of radiology
IF:3.2Q1
DOI:10.1016/j.ejrad.2025.112173
PMID:40403678
|
研究论文 | 本研究比较了基于多参数MRI的临床、放射组学、深度学习和两种融合模型在预测局部晚期直肠癌早期复发中的表现 | 首次比较了四种不同模型(临床、放射组学、深度学习和两种融合模型)在预测局部晚期直肠癌早期复发中的性能,并发现基于决策的晚期融合模型表现最佳 | 回顾性研究设计可能引入选择偏倚,且样本量相对有限(337例患者) | 比较不同模型预测局部晚期直肠癌早期复发的性能 | 局部晚期直肠癌患者 | 数字病理 | 直肠癌 | 多参数MRI(包括T2WI、DWI、T1WI和CET1WI) | XGBoost分类器(用于建立临床模型、放射组学模型、深度学习模型和两种融合模型) | 医学影像 | 337例来自四个中心的局部晚期直肠癌患者(2016年1月至2021年9月) |
1010 | 2025-05-24 |
Dissecting the genetic complexity of myalgic encephalomyelitis/chronic fatigue syndrome via deep learning-powered genome analysis
2025-May-11, medRxiv : the preprint server for health sciences
DOI:10.1101/2025.04.15.25325899
PMID:40321247
|
研究论文 | 本研究利用深度学习框架HEAL2对肌痛性脑脊髓炎/慢性疲劳综合征(ME/CFS)进行全基因组分析,揭示了其遗传复杂性及相关症状的遗传风险 | 开发了新型深度学习框架HEAL2,用于ME/CFS的遗传预测和风险基因识别,并揭示了这些基因在多种组织和细胞类型中的功能重要性 | 研究未提及样本量大小,可能影响结果的普适性 | 探索ME/CFS的遗传、分子和细胞基础,寻找潜在的治疗靶点 | 肌痛性脑脊髓炎/慢性疲劳综合征(ME/CFS)患者及其基因组数据 | 机器学习 | 肌痛性脑脊髓炎/慢性疲劳综合征 | 全基因组分析、转录组分析、网络分析 | 深度学习框架HEAL2 | 基因组数据、转录组数据、蛋白质组数据 | NA |
1011 | 2025-05-24 |
Hierarchical diagnosis of breast phyllodes tumors enabled by deep learning of ultrasound images: a retrospective multi-center study
2025-May-08, Cancer imaging : the official publication of the International Cancer Imaging Society
IF:3.5Q1
DOI:10.1186/s40644-025-00879-9
PMID:40340752
|
research paper | 本研究提出了一种基于深度学习的乳腺叶状肿瘤分层诊断模型(PTs-HDM),用于术前识别和分级 | 开发了PTs-HDM模型,首次实现了乳腺叶状肿瘤的术前自动分层诊断,并通过热激活映射指导提高了放射科医生的诊断一致性 | 研究为回顾性设计,样本量相对有限(712例患者) | 开发一种术前诊断乳腺叶状肿瘤的深度学习方法 | 乳腺叶状肿瘤(PTs)和纤维腺瘤(FAs)患者 | digital pathology | breast cancer | deep learning | CNN | ultrasound images | 712 patients from five hospitals |
1012 | 2025-05-24 |
What insights can spatiotemporal esophageal atlases and deep learning bring to engineering the esophageal mucosa?
2025-05-05, Developmental cell
IF:10.7Q1
DOI:10.1016/j.devcel.2025.04.009
PMID:40328228
|
research paper | 本文介绍了一个结合实验和计算的平台,用于绘制人类食道的时空发育图谱并预测调控上皮分化的关键信号通路 | 结合空间发育数据和深度学习,提出了一种无外源、可扩展的策略,用于从人类多能干细胞生成食道黏膜 | NA | 研究人类食道的时空发育及其调控机制,以工程化食道黏膜 | 人类食道的发育和人类多能干细胞(hPSCs) | digital pathology | NA | 深度学习 | NA | 空间发育数据 | NA |
1013 | 2025-05-24 |
Artificial Intelligence in the Management of Malnutrition in Cancer Patients: A Systematic Review
2025-May-05, Advances in nutrition (Bethesda, Md.)
DOI:10.1016/j.advnut.2025.100438
PMID:40334987
|
系统综述 | 本文系统评估了人工智能在癌症患者营养不良管理中的作用,重点关注其在营养状况评估、预测、临床结果和身体成分监测方面的有效性 | 人工智能模型在营养不良检测中表现出高预测准确性(AUC>0.80),机器学习算法优于传统筛查工具,深度学习模型在医学影像中实现了高分割精度(Dice相似系数:0.92-0.94) | 需要进一步研究以标准化AI模型并确保临床适用性 | 评估人工智能在癌症患者营养不良管理中的作用 | 癌症患者 | 医疗人工智能 | 癌症 | 机器学习算法(决策树、随机森林、支持向量机)、深度学习模型 | 决策树、随机森林、支持向量机、深度学习模型 | 医学影像、临床数据 | 11项研究(n = 52,228名患者) |
1014 | 2025-05-24 |
Large language models as an academic resource for radiologists stepping into artificial intelligence research
2025 May-Jun, Current problems in diagnostic radiology
IF:1.5Q3
DOI:10.1067/j.cpradiol.2024.12.004
PMID:39672727
|
研究论文 | 评估GPT-4o作为推荐系统在帮助放射科医生理解和实施AI研究中的有效性 | 使用大型语言模型(如GPT-4o)作为虚拟顾问,为放射科研究人员提供定制的机器学习和深度学习算法推荐 | 需要进一步研究将大型语言模型整合到常规工作流程中及其在持续专业发展中的作用 | 增强放射科医生对AI在研究中应用的理解和实施 | 放射科医生和早期职业研究人员 | 自然语言处理 | NA | 大型语言模型(LLMs) | GPT-4o, U-Net, Random Forest, Attention U-Net, EfficientNet | 医学影像数据 | NA |
1015 | 2025-05-24 |
A Tutorial on the Use of Artificial Intelligence Tools for Facial Emotion Recognition in R
2025 May-Jun, Multivariate behavioral research
IF:5.3Q1
DOI:10.1080/00273171.2025.2455497
PMID:39949325
|
教程 | 本文回顾了三种基于人工智能的面部情绪识别工具,并提供了R语言中的示例代码 | 介绍了三种流行的人工智能情绪检测程序,并提供了R语言的实现代码 | 仅介绍了三种工具,未涉及其他可能的技术或工具 | 提高社交和行为科学研究中可解释人工智能的素养 | 面部情绪识别工具 | 计算机视觉 | NA | 机器学习、深度学习、计算机视觉 | NA | 图像 | NA |
1016 | 2025-05-24 |
Enhancing data quality in medical concept normalization through large language models
2025-May, Journal of biomedical informatics
IF:4.0Q2
DOI:10.1016/j.jbi.2025.104812
PMID:40180205
|
research paper | 本研究评估了医学概念归一化(MCN)在不同数据质量场景下的表现,并探讨了如何利用大型语言模型(LLMs)提升数据质量以改善MCN性能 | 通过使用ChatGPT进行零样本和小样本提示的数据增强,研究了数据质量对MCN模型性能的影响,并提出了基于LLM的数据增强策略 | 数据增强技术可能引入重复数据项,特别是在数据分布的均值区域,需谨慎设计以避免这些问题 | 提升医学概念归一化(MCN)的数据质量,以改善MCN性能 | 医学概念归一化(MCN)的数据集 | 自然语言处理 | NA | ChatGPT-based zero-shot prompting, few-shot prompting | LLM | text | NA |
1017 | 2025-05-24 |
Systematic review of computational techniques, dataset utilization, and feature extraction in electrocardiographic imaging
2025-May, Medical & biological engineering & computing
IF:2.6Q3
DOI:10.1007/s11517-024-03264-z
PMID:39779645
|
综述 | 本文系统分析了ECG成像(ECGI)重建中的计算技术,重点关注数据集识别、问题解决和特征提取 | 揭示了传统方法与先进技术(如混合技术和深度学习)在ECGI中的应用趋势,并强调了数据利用和计算技术整合的重要性 | 仅限2010年至2023年发表的英文同行评审论文,且排除了未描述计算技术的研究 | 分析ECGI重建中的计算技术,以提升心脏诊断和治疗的精确性 | ECG成像(ECGI)相关的计算技术和数据集 | 生物医学工程 | 心血管疾病 | 边界元法、Tikhonov方法、深度学习 | NA | ECG成像数据 | 99篇论文 |
1018 | 2025-05-24 |
Evolution Trend of Brain Science Research: An Integrated Bibliometric and Mapping Approach
2025-May, Brain and behavior
IF:2.6Q3
DOI:10.1002/brb3.70451
PMID:40395088
|
研究论文 | 本研究采用文献计量分析和知识图谱可视化方法,绘制了全球脑科学研究的趋势、热点和合作网络 | 首次全面综述脑科学研究趋势,揭示当前研究前沿和关键方向,为研究人员和政策制定者提供战略路线图 | 中国在国际合作方面表现有限,且高影响力学者较少,存在‘数量重于质量’的挑战 | 分析全球脑科学研究的趋势、热点和合作网络 | 1990-2023年间Web of Science核心合集中的13,590篇文章 | 文献计量学 | NA | 文献计量分析、知识图谱可视化 | NA | 文献数据 | 13,590篇文章 |
1019 | 2025-05-24 |
Hybrid optimized temporal convolutional networks with long short-term memory for heart disease prediction with deep features
2025-May, Computer methods in biomechanics and biomedical engineering
IF:1.7Q3
DOI:10.1080/10255842.2024.2310075
PMID:38584483
|
研究论文 | 本文提出了一种结合时间卷积网络和长短期记忆网络的混合深度学习策略,用于心脏病预测 | 使用混合优化的深度分类器(HODC)结合TCN和LSTM,并采用新提出的EFBI元优化算法进行参数优化 | 未提及具体的数据集来源和样本多样性,可能影响模型的泛化能力 | 开发一种高效的心脏病早期预测模型 | 心脏病患者 | 机器学习 | 心血管疾病 | 1DCNN, TCN, LSTM | 混合模型(TCN+LSTM) | 医疗数据 | NA |
1020 | 2025-05-24 |
ESMpHLA: Evolutionary Scale Model-Based Deep Learning Prediction of HLA Class I Binding Peptides
2025-May, HLA
IF:5.9Q1
DOI:10.1111/tan.70263
PMID:40405507
|
research paper | 本研究开发了一种基于进化尺度模型(ESM)的深度学习模型ESMpHLA,用于预测HLA I类结合肽 | 结合了并行CNN块和交叉注意力机制,构建了新型ESMpHLA模型,并在HLA I类结合肽预测中表现出色 | NA | 预测HLA I类与肽的结合亲和力,以研究免疫识别和疫苗开发 | HLA I类结合肽 | machine learning | NA | 深度学习 | CNN, 交叉注意力机制 | 肽序列数据 | 91,560个HLA-A等位基因的结合肽,56,731个HLA-B等位基因的结合肽,2,444个HLA-C等位基因的结合肽 |