深度学习在生物医药领域中的应用

本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!

如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!

Sample Image
添加微信请说明来意
Sample Image
微信赞赏

除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。

当前筛选条件: [分区不过滤] [IF不过滤] [发表日期不过滤] [清除筛选条件]
当前共找到 24772 篇文献,本页显示第 10301 - 10320 篇。
序号 推送日期 文章 类型 简述 创新点 不足 研究目的 研究对象 领域 病种 技术 模型 数据类型 样本量
10301 2024-12-22
Probability maps for deep learning-based head and neck tumor segmentation: Graphical User Interface design and test
2024-07, Computers in biology and medicine IF:7.0Q1
研究论文 本文开发了一种基于深度学习的方法,用于头颈部肿瘤的分割,并设计了一个图形用户界面(GUI)来展示肿瘤概率图 本文的创新点在于使用深度学习生成的概率图来替代单一的肿瘤轮廓,提供更直观且适合临床使用的分割结果 本文的局限性在于仅对九位专家进行了用户研究,样本量较小 展示深度学习生成的肿瘤概率图在头颈部肿瘤分割中的临床相关性、直观性和适用性 头颈部肿瘤的PET-CT图像分割 计算机视觉 头颈部癌症 深度学习 NA 图像 九位肿瘤勾画专家
10302 2024-12-22
Overview of AlphaFold2 and breakthroughs in overcoming its limitations
2024-06, Computers in biology and medicine IF:7.0Q1
综述 本文综述了AlphaFold2在蛋白质结构预测领域的突破及其局限性,并探讨了其应用和未来发展方向 AlphaFold2通过深度学习方法实现了高精度的蛋白质三维结构预测,显著推动了蛋白质折叠领域的进展 尽管AlphaFold2在蛋白质结构预测方面取得了突破,但仍有许多方面需要进一步研究,如动态变化、点突变等 探讨AlphaFold2在蛋白质结构预测中的应用及其在药物靶点发现中的潜力 AlphaFold2及其在蛋白质结构预测、动态变化、点突变等方面的应用 机器学习 NA 深度学习 AlphaFold2 蛋白质序列 NA
10303 2024-12-22
Machine learning-based longitudinal prediction for GJB2-related sensorineural hearing loss
2024-06, Computers in biology and medicine IF:7.0Q1
研究论文 本研究旨在利用机器学习构建一个预测GJB2相关感音神经性听力损失进展的模型,以实现个性化的医疗规划 首次利用机器学习技术构建了GJB2相关感音神经性听力损失的纵向预测模型,并展示了其在个性化医疗规划中的应用潜力 研究样本仅限于具有双等位GJB2变异的感音神经性听力损失患者,可能限制了模型的普适性 构建一个能够预测GJB2相关感音神经性听力损失进展的机器学习模型,以支持个性化的医疗干预 具有双等位GJB2变异的感音神经性听力损失患者 机器学习 感音神经性听力损失 机器学习 LSTM 音频图 449名患者,2184份音频图
10304 2024-12-22
Multi-scale feature fusion and class weight loss for skin lesion classification
2024-06, Computers in biology and medicine IF:7.0Q1
研究论文 本文提出了一种多尺度特征融合结构和类权重损失方法,用于皮肤病变分类 创新点包括多尺度特征融合结构、类权重、标签平滑和重采样方法,以及对HAM10000_RE数据集的头发特征去除实验 未提及具体局限性 提高皮肤病变图像分类的准确性 皮肤病变图像 计算机视觉 皮肤癌 深度学习 NA 图像 使用了HAM10000和ISIC2019数据集
10305 2024-12-22
Linguistic-based Mild Cognitive Impairment detection using Informative Loss
2024-06, Computers in biology and medicine IF:7.0Q1
研究论文 本文提出了一种基于自然语言处理技术的深度学习方法,用于区分老年人的轻度认知障碍和正常认知状态 提出了一个新的损失函数InfoLoss,通过观察每个句子序列的熵减少来提高分类准确性 NA 开发一种能够区分轻度认知障碍和正常认知状态的深度学习方法 老年人的轻度认知障碍和正常认知状态 自然语言处理 NA 自然语言处理技术 Transformer、多层感知器 文本 I-CONECT研究项目中的视频采访转录数据
10306 2024-12-22
Exploring UMAP in hybrid models of entropy-based and representativeness sampling for active learning in biomedical segmentation
2024-06, Computers in biology and medicine IF:7.0Q1
研究论文 本文研究了在医学分割中基于主动学习的熵和代表性采样技术的混合模型,特别是探讨了UMAP在捕捉代表性方面的作用 本文提出了一种新的混合采样技术Entropy-UMAP,并在医学分割任务中取得了显著的Dice分数提升 本文仅在心脏和前列腺数据集上进行了验证,尚未在其他医学数据集上进行广泛测试 探索UMAP在基于主动学习的医学分割中的应用,并评估其与熵采样结合的效果 心脏和前列腺的医学分割任务 计算机视觉 NA UMAP NA 图像 心脏和前列腺数据集
10307 2024-12-22
UNSEG: unsupervised segmentation of cells and their nuclei in complex tissue samples
2024-Apr-23, bioRxiv : the preprint server for biology
研究论文 本文介绍了一种无监督的细胞及其核在复杂组织样本中分割的方法UNSEG UNSEG在无需训练数据的情况下实现了深度学习级别的性能,并引入了新的扰动分水岭算法,提高了经典分水岭的准确性 文中提到分割准确性的量化可能存在偏差,且分割在组织样本中仍然是一个具有挑战性的问题 开发一种无需标签的无监督学习方法,用于复杂组织样本中细胞及其核的分割 复杂组织样本中的细胞及其核 计算机视觉 NA 无监督学习 UNSEG 图像 包括一个高质量的胃肠道组织(GIT)数据集和公开数据集
10308 2024-12-22
Model Agnostic Semi-Supervised Meta-Learning Elucidates Understudied Out-of-distribution Molecular Interactions
2024-Mar-01, bioRxiv : the preprint server for biology
研究论文 本文开发了一种半监督元学习框架MMAPLE,用于解决数据分布偏移和标签数据稀缺的问题,并在多个应用中展示了其有效性 提出了MMAPLE框架,通过有效利用分布外的未标记数据,在迁移学习失败时仍能取得显著的预测效果 NA 解决生物学问题中由于实验限制和人类偏见导致的未充分研究问题,特别是在数据分布偏移和标签数据稀缺的情况下 分布外的药物-靶点相互作用、隐藏的人类代谢物-酶相互作用以及未充分研究的微生物组代谢物-人类受体相互作用 机器学习 NA 半监督元学习 MMAPLE 分子相互作用数据 NA
10309 2024-12-22
Accelerating antimicrobial peptide design: Leveraging deep learning for rapid discovery
2024, PloS one IF:2.9Q1
研究论文 本文利用机器学习和深度学习技术加速抗菌肽的设计和发现 提出了两种方法:一种是基于预计算的物理化学属性进行机器学习分类,另一种是将基本肽特征转换为信号图像并输入深度学习神经网络,显著提高了预测准确率 目前仅针对单一微生物(革兰氏阴性大肠杆菌)进行研究,未来需要进一步验证以适应其他类型的抗菌、抗病毒和抗癌肽 克服传统实验方法的限制,加速抗菌肽的开发 评估1,360个具有抗大肠杆菌活性的肽序列及其最小抑制浓度与34个物理化学特性之间的关系 机器学习 NA 机器学习,深度学习 神经网络 序列,图像 1,360个肽序列
10310 2024-12-21
Near-Infrared Autofluorescence Signature: A New Parameter for Intraoperative Assessment of Parathyroid Glands in Primary Hyperparathyroidism
2025-Jan-01, Journal of the American College of Surgeons IF:3.8Q1
研究论文 本研究探讨了近红外自体荧光(NIRAF)在术中区分原发性甲状旁腺功能亢进症中正常与病变甲状旁腺腺体的应用 首次研究了正常与病变甲状旁腺腺体在术中近红外自体荧光特征上的差异,并开发了基于这些特征的深度学习模型 研究仅在单一三级转诊中心进行,样本量和时间跨度有限 探讨正常与病变甲状旁腺腺体在术中近红外自体荧光特征上的差异,并开发基于这些特征的深度学习模型 原发性甲状旁腺功能亢进症患者的正常与病变甲状旁腺腺体 数字病理学 内分泌疾病 近红外自体荧光成像 深度学习模型 图像 1506个正常腺体和597个病变腺体,来自797名患者
10311 2024-12-21
Expert opinion elicitation for assisting deep learning based Lyme disease classifier with patient data
2025-Jan, International journal of medical informatics IF:3.7Q2
研究论文 本研究通过专家意见提取,结合患者数据协助深度学习模型进行莱姆病分类,并提出了一种结合多种模态概率估计的算法 首次通过专家意见提取计算莱姆病概率,并结合深度学习图像分类器的概率得分 NA 提高基于图像的深度学习莱姆病预扫描器的鲁棒性 莱姆病的早期症状——游走性红斑皮肤病变 机器学习 莱姆病 深度学习 深度学习模型 图像和患者数据 15位专家医生
10312 2024-12-21
Quality assessment of critical and non-critical domains of systematic reviews on artificial intelligence in gliomas using AMSTAR II: A systematic review
2025-Jan, Journal of clinical neuroscience : official journal of the Neurosurgical Society of Australasia IF:1.9Q4
系统评价 本研究使用AMSTAR II工具评估了关于人工智能在胶质瘤管理中的系统评价和荟萃分析的质量 首次使用AMSTAR II工具对人工智能在胶质瘤管理中的系统评价进行质量评估 大多数评价在关键领域(如研究的排除、荟萃分析方法的适当性和发表偏倚的评估)和非关键领域(如研究设计选择和资金来源的披露)表现不佳 评估当前关于人工智能在胶质瘤管理中的系统评价和荟萃分析的质量 关于人工智能在胶质瘤管理中的系统评价和荟萃分析 机器学习 脑肿瘤 NA NA NA 从812项研究中筛选出23项研究
10313 2024-12-21
Graph neural networks and transfer entropy enhance forecasting of mesozooplankton community dynamics
2025-Jan, Environmental science and ecotechnology IF:14.0Q1
研究论文 本文探讨了图神经网络(GNN)在预测中生浮游动物群落动态中的应用,并研究了生态系统动态的图结构对预测准确性的影响 本文创新性地将图神经网络与传递熵结合,用于预测中生浮游动物群落动态,并揭示了生态系统动态的图结构对模型预测准确性的影响 本文未完全解决理论驱动模型中参数化和反馈机制的复杂性问题 研究如何通过图神经网络提高中生浮游动物群落动态的预测准确性 中生浮游动物群落动态及其在海洋生态系统中的作用 机器学习 NA 图神经网络(GNN) 图神经网络(GNN) 生态系统动态数据 NA
10314 2024-12-21
Utilizing deep learning to investigate the impacts of climate change on groundwater dynamics and pumping variability
2024-Dec-20, The Science of the total environment
研究论文 本研究利用深度学习模型探讨气候变化对台湾中部农业地区地下水动态和抽水用电量的影响 采用CNN-LSTM混合深度学习模型预测未来地下水位和抽水电量的变化,并结合CMIP6气候模型和SSP情景进行未来15年的预测 研究仅基于特定地区的数据,结果的普适性可能有限 探讨气候变化对地下水位和抽水电量的影响,并预测未来趋势 台湾中部农业地区的地下水位和抽水电量的变化 机器学习 NA 深度学习 CNN-LSTM 数值数据 2007年至2021年的月降水量和平均温度数据,以及2022年至2036年的CMIP6气候模型预测数据
10315 2024-12-21
Assessing and improving the high uncertainty of global gross primary productivity products based on deep learning under extreme climatic conditions
2024-Dec-20, The Science of the total environment
研究论文 本研究评估了八种全球总初级生产力(GPP)产品在极端气候条件下的表现,并利用卷积神经网络(CNN)提高了GPP在极端气候条件下的估算精度 本研究首次利用卷积神经网络(CNN)基于ECMWF-Reanalysis-5th-Generation(ERA5)气象数据,显著提高了GPP在极端气候条件下的估算精度 研究主要集中在极端气候条件下的GPP估算,未涵盖所有气候条件下的表现 评估全球GPP产品在极端气候条件下的表现,并提出改进方法 八种全球GPP产品在极端气候条件下的表现 生态与环境科学 NA 卷积神经网络(CNN) 卷积神经网络(CNN) 气象数据 2003年至2014年的通量塔数据和20个独立验证站点
10316 2024-12-21
Wetland classification based on depth-adaptive convolutional neural networks using leaf-off SAR imagery
2024-Dec-20, The Science of the total environment
研究论文 本文开发了一种基于深度自适应卷积神经网络的湿地分类方法,使用落叶期的Sentinel-1 SAR影像和辅助数据 提出了基于U-Net架构的深度自适应卷积神经网络,结合多土地覆盖邻近信息和基于CNN的自监督SAR去噪方法,提高了湿地分类的准确性和效率 NA 评估深度学习技术在雷达数据上对大规模湿地分类的准确性和效率 湿地分类,包括沼泽湿地、灌木湿地、森林湿地和开阔水域 计算机视觉 NA 深度学习 卷积神经网络(CNN) 图像 NA
10317 2024-12-21
Deep learning model for low-dose CT late iodine enhancement imaging and extracellular volume quantification
2024-Dec-20, European radiology IF:4.7Q1
研究论文 本文开发并验证了两种深度学习模型(RDN和cGAN)用于低剂量CT晚期碘增强成像和细胞外体积定量 本文提出的RDN模型在图像质量和信号噪声比方面显著优于cGAN模型和原始图像,提高了视觉分析的可识别性 NA 开发和验证深度学习模型,以去噪晚期碘增强图像并实现准确的细胞外体积定量 晚期碘增强图像和细胞外体积定量 计算机视觉 心血管疾病 深度学习 RDN, cGAN 图像 423名患者,分为训练组(182名)、调优组(48名)、内部验证组(92名)和外部验证组(101名)
10318 2024-12-21
AI-Enhanced Interface for Colonic Polyp Segmentation Using DeepLabv3+ with Comparative Backbone Analysis
2024-Dec-19, Biomedical physics & engineering express IF:1.3Q3
研究论文 本文提出了一种使用DeepLabv3+模型和ResNet架构进行结肠息肉分割的方法,并通过实验验证了其高准确性 本文的创新点在于使用DeepLabv3+模型和ResNet-50作为骨干网络,结合编码器-解码器结构,实现了高精度的结肠息肉分割 本文的局限性在于仅使用了Kvasir-SEG数据集进行训练和测试,可能存在数据集偏差问题 本文的研究目的是开发一种自动、快速且高精度的结肠息肉分割方法,以辅助结直肠癌的诊断和手术规划 本文的研究对象是结肠息肉的分割 计算机视觉 结直肠癌 DeepLabv3+ CNN 图像 使用了Kvasir-SEG数据集进行训练和测试
10319 2024-12-21
A deep learning framework deploying segment anything to detect pan-cancer mitotic figures from haematoxylin and eosin-stained slides
2024-Dec-19, Communications biology IF:5.2Q1
研究论文 本文提出了一种基于人工智能的方法,用于检测苏木精和伊红染色的数字化全切片图像中的有丝分裂象 本文创建了最大的有丝分裂象数据集(N=74,620),并提出了一种两阶段框架OMG-Net,该框架结合了Segment Anything Model和改进的ResNet18,显著提高了泛癌有丝分裂象检测的性能 本文的局限性在于依赖于现有的公开数据集,可能无法完全覆盖所有癌症类型的有丝分裂象 开发一种高效且准确的方法来检测泛癌有丝分裂象,以辅助癌症分级和治疗 苏木精和伊红染色的数字化全切片图像中的有丝分裂象 数字病理学 NA 深度学习 CNN 图像 74,620个有丝分裂象样本
10320 2024-12-21
Geometric deep learning improves generalizability of MHC-bound peptide predictions
2024-Dec-19, Communications biology IF:5.2Q1
研究论文 本文探讨了利用几何深度学习(GDL)提高MHC结合肽预测的泛化能力 本文提出了基于结构的方法,利用几何深度学习(GDL)和三维自监督学习(3D-SSL),显著提高了MHC结合肽预测的泛化能力,并在数据效率上优于传统的基于序列的方法 本文未详细讨论GDL方法在其他疾病或免疫相关领域的应用效果 提高MHC结合肽预测的泛化能力和数据效率 MHC分子与肽的相互作用 机器学习 NA 几何深度学习(GDL) 几何深度学习模型 结构数据(3D) 未具体说明样本数量,但提到3D-SSL方法在未接触任何结合亲和力数据的情况下表现优异
回到顶部