本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新(使用关键词“['deep learning']
”过滤),已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!
除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价19.9元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 | 算法框架 | 模型架构 | 性能指标 | 计算资源 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
10321 | 2025-10-07 |
Robust automatic train pass-by detection combining deep learning and sound level analysis
2025-May-01, JASA express letters
IF:1.2Q3
DOI:10.1121/10.0036754
PMID:40387613
|
研究论文 | 提出结合深度学习和声级分析的创新方法,用于自动检测列车通过事件 | 首次将通用车辆噪声分类器与声级分析和梅尔频谱图分类相结合,专门针对列车通过检测 | NA | 开发自动声音事件检测和分类方法以控制高噪声水平 | 列车通过时产生的声音信号 | 机器学习 | NA | 声级分析,梅尔频谱图分析 | 深度学习分类器 | 音频信号 | 多种长期信号 | NA | NA | 时间重叠度90% | NA |
10322 | 2025-10-07 |
Food Freshness Prediction Platform Utilizing Deep Learning-Based Multimodal Sensor Fusion of Volatile Organic Compounds and Moisture Distribution
2025-04-25, ACS sensors
IF:8.2Q1
DOI:10.1021/acssensors.5c00254
PMID:40123082
|
研究论文 | 开发了一种基于深度学习的多模态传感器融合平台,用于通过挥发性有机化合物和水分分布预测牛肉新鲜度 | 将自注意力机制和SENet缩放特征引入多模态深度学习模型,实现传感器重要特征的自适应融合和聚焦 | 仅针对牛肉样品进行研究,未验证在其他食品类型上的适用性 | 开发能够精确监测牛肉腐败过程的多模态传感技术 | 牛肉样品 | 机器学习 | NA | 表面增强拉曼散射(SERS), 低场核磁共振(LF-NMR) | 深度学习 | 传感器数据, 挥发性有机化合物数据, 水分分布数据 | NA | NA | 自注意力机制, SENet | R², 准确率 | NA |
10323 | 2025-10-07 |
Spider-Inspired Ion Gel Sensor for Dual-Mode Detection of Force and Speed via Magnetic Induction
2025-04-25, ACS sensors
IF:8.2Q1
DOI:10.1021/acssensors.5c00403
PMID:40152352
|
研究论文 | 基于蜘蛛感知机制设计了一种可同时检测风速和压力的双模式离子凝胶柔性传感器 | 结合蜘蛛感知机制开发了集成磁感应和电容设计的双模式传感器,实现了力与速度的同时检测 | NA | 开发多功能、高灵敏度、宽检测范围且耐用的柔性传感器 | 风速和压力检测,人体运动监测 | 传感器技术 | NA | 磁感应共振原理,电容设计 | 深度学习算法 | 阻抗信号,电容信号 | NA | NA | NA | 准确率 | NA |
10324 | 2025-10-07 |
Deep Learning-driven Microfluidic-SERS to Characterize the Heterogeneity in Exosomes for Classifying Non-Small Cell Lung Cancer Subtypes
2025-04-25, ACS sensors
IF:8.2Q1
DOI:10.1021/acssensors.4c03621
PMID:40167999
|
研究论文 | 开发了一种结合深度学习、微流控芯片和表面增强拉曼散射的技术,用于通过外泌体表征实现非小细胞肺癌的早期诊断和分子分型 | 首次将深度学习与微流控-SERS技术集成,实现了外泌体的高效捕获、富集和分析,能够区分不同NSCLC细胞系 | 未提及临床样本验证规模及多中心验证数据 | 实现非小细胞肺癌的早期诊断和精确分子分型 | 非小细胞肺癌细胞系的外泌体 | 生物医学工程 | 肺癌 | 微流控技术, 表面增强拉曼散射(SERS), 外泌体分析 | 深度学习 | 拉曼光谱数据 | 三种NSCLC细胞系和正常细胞系 | NA | NA | 准确率, AUC曲线 | NA |
10325 | 2025-04-26 |
Informing Deep Learning of Sensing Data with Physics and Chemistry
2025-04-25, ACS sensors
IF:8.2Q1
DOI:10.1021/acssensors.5c01075
PMID:40275811
|
NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
10326 | 2025-10-07 |
Blood cancer prediction model based on deep learning technique
2025-01-13, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-024-84475-0
PMID:39805996
|
研究论文 | 本研究开发了一种基于深度学习技术的血癌预测模型,旨在提高血癌早期诊断的准确性 | 首次系统比较了ResNetRS50、RegNetX016、AlexNet、Convnext、EfficientNet、Inception_V3、Xception和VGG19等多种深度学习模型在血癌预测中的性能,并发现ResNetRS50在准确性和速度方面表现最优 | NA | 通过早期诊断血癌来降低死亡率,为患者提供更好的生存机会 | 血癌患者 | 机器学习 | 血癌 | 深度学习 | CNN | NA | NA | NA | ResNetRS50, RegNetX016, AlexNet, Convnext, EfficientNet, Inception_V3, Xception, VGG19 | 准确率, 错误率, 速度 | NA |
10327 | 2025-10-07 |
Importance of Computer-aided Drug Design in Modern Pharmaceutical Research
2025, Current drug discovery technologies
|
综述 | 本文探讨计算机辅助药物设计在现代药物研发中的重要性及其基本原理 | 系统综述CADD在加速药物发现过程、提高准确性和降低资源消耗方面的综合价值 | 基于文献综述的方法可能受限于已有研究的覆盖范围和质量 | 研究计算机辅助药物设计在药物研发中的意义和价值 | 药物发现和开发过程中的生物活性化合物 | 计算化学与药物设计 | NA | 分子对接、基于片段的药物发现、从头药物设计、药效团建模、定量构效关系、3D-QSAR、同源建模、计算机ADMET、机器学习/深度学习 | NA | 文献数据 | NA | NA | NA | NA | NA |
10328 | 2025-10-07 |
Augmenting Human Expertise in Weighted Ensemble Simulations through Deep Learning-Based Information Bottleneck
2024-Dec-10, Journal of chemical theory and computation
IF:5.7Q1
DOI:10.1021/acs.jctc.4c00919
PMID:39589127
|
研究论文 | 本研究提出了一种结合深度学习和专家知识的混合方法,用于改进加权集成模拟中的集体变量选择和采样效率 | 将状态预测信息瓶颈方法与专家知识相结合,形成混合方法,协同发挥数据驱动和专家指导的优势 | 仅在丙氨酸二肽和chignolin系统上进行了基准测试,需要更多系统验证 | 提高加权集成模拟的采样效率和状态探索能力 | 分子动力学模拟中的加权集成方法 | 机器学习 | NA | 加权集成方法,状态预测信息瓶颈 | 深度学习 | 分子动力学模拟数据 | NA | NA | 状态预测信息瓶颈 | 运行间方差,状态采样效率 | NA |
10329 | 2025-10-07 |
Increasing phosphorus loss despite widespread concentration decline in US rivers
2024-Nov-26, Proceedings of the National Academy of Sciences of the United States of America
IF:9.4Q1
DOI:10.1073/pnas.2402028121
PMID:39556745
|
研究论文 | 利用深度学习重建美国河流总磷浓度趋势,发现尽管浓度普遍下降但磷流失总量仍在增加 | 首次结合密集水文气象数据和深度学习填补历史数据空白,重建美国本土河流40年总磷浓度和流失量趋势 | 依赖历史数据的完整性和模型重建的准确性,气候变化对河流流量的影响增加了磷流失控制的复杂性 | 分析美国河流总磷浓度和流失量的长期变化趋势 | 美国本土430条河流的总磷浓度和流失量 | 环境科学, 机器学习 | NA | 水文气象监测, 深度学习 | LSTM | 水文气象时间序列数据 | 美国本土430条河流1980-2019年每日记录 | NA | 多任务长短期记忆网络 | NA | NA |
10330 | 2025-10-07 |
Rapid Detection of SARS-CoV-2 Variants Using an Angiotensin-Converting Enzyme 2-Based Surface-Enhanced Raman Spectroscopy Sensor Enhanced by CoVari Deep Learning Algorithms
2024-06-28, ACS sensors
IF:8.2Q1
DOI:10.1021/acssensors.4c00488
PMID:38843447
|
研究论文 | 开发了一种结合表面增强拉曼光谱和深度学习算法的集成方法,用于快速检测和定量SARS-CoV-2变异株 | 基于ACE2功能化的SERS传感器与CoVari深度学习算法相结合,可同时预测病毒变异株种类和浓度 | 未明确说明样本来源和具体样本数量,未知样本测试在浓度高于781 PFU/mL时分类准确率>90% | 开发快速定量检测SARS-CoV-2变异株的方法 | SARS-CoV-2病毒及其变异株(SARS-CoV-2 B1和CoV-NL63) | 生物传感器与机器学习 | COVID-19 | 表面增强拉曼光谱(SERS) | 深度学习 | 光谱数据 | NA | NA | CoVari | 准确率, R²值 | NA |
10331 | 2025-10-07 |
Two-Dimensional Deep Learning Frameworks for Drug-Induced Cardiotoxicity Detection
2024-06-28, ACS sensors
IF:8.2Q1
DOI:10.1021/acssensors.4c00654
PMID:38842187
|
研究论文 | 提出两种基于深度学习的框架STFT-CNN和SST-CNN,用于检测药物诱导的心脏毒性 | 首次将短时傅里叶变换和同步压缩变换与CNN结合,从iPSC-CMs的机械搏动信号中检测心脏毒性 | 未明确说明样本规模和数据集的详细组成 | 开发更准确可靠的药物心脏毒性检测方法 | 诱导多能干细胞衍生的心肌细胞(iPSC-CMs)的机械搏动信号 | 机器学习 | 心血管疾病 | 阻抗测量,短时傅里叶变换(STFT),同步压缩变换(SST) | CNN | 时间序列信号,二维图像表示 | NA | NA | STFT-CNN, SST-CNN | 准确率 | NA |
10332 | 2025-10-07 |
Percolation Images: Fractal Geometry Features for Brain Tumor Classification
2024, Advances in neurobiology
DOI:10.1007/978-3-031-47606-8_29
PMID:38468053
|
研究论文 | 提出一种结合分形几何特征和深度学习的脑肿瘤分类混合方法 | 引入分形几何概念生成渗流图像以突出脑部图像的空间特性,并与原始图像共同输入卷积神经网络 | NA | 脑肿瘤检测与分类 | 脑部图像 | 计算机视觉 | 脑肿瘤 | 分形几何分析 | CNN | 图像 | NA | NA | NA | NA | NA |
10333 | 2025-10-07 |
An autonomous drone for search and rescue in forests using airborne optical sectioning
2021-06-23, Science robotics
IF:26.1Q1
DOI:10.1126/scirobotics.abg1188
PMID:34162744
|
研究论文 | 本文介绍了一种使用空中光学切片技术在森林中自主搜索救援人员的无人机系统 | 开发了基于自适应采样的实时在线搜索技术,能够在飞行过程中动态调整路径,将图像复杂度降低至先前方法的1/10 | 在17次野外实验中未能找到全部42名隐藏人员(找到38名),在预设路径实验中精度为86% | 开发能够在茂密遮挡森林中自主搜索救援人员的无人机系统 | 森林中隐藏的人员 | 计算机视觉 | NA | 空中光学切片技术,热成像处理 | 深度学习 | 热成像图像 | 17次野外实验,涉及42名隐藏人员 | NA | NA | 精度, 分类置信度 | 机载实时计算 |
10334 | 2025-10-07 |
Application of deep learning on quantitative analysis of binary solid dispersions by UV Raman spectroscopy for planetary exploration
2025-Oct-15, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy
DOI:10.1016/j.saa.2025.126154
PMID:40279879
|
研究论文 | 提出一种结合注意力机制的深度学习模型IRMSE,用于行星探测中紫外拉曼光谱的矿物和有机物定量分析 | 首次将带有压缩激励模块的Inception-ResNet-v1模型应用于紫外拉曼光谱定量分析,通过注意力机制从冗余特征中选择关键信息 | NA | 验证深度学习在行星探测拉曼光谱定量分析中的可行性 | 矿物与有机物组成的二元固体分散体系 | 机器学习 | NA | 紫外拉曼光谱 | CNN | 光谱数据 | NA | NA | Inception-ResNet-v1 | 预测准确度 | NA |
10335 | 2025-10-07 |
A high-throughput framework for predicting three-dimensional structural-mechanical relationships of human cranial bones using a deep learning-based method
2025-Aug, Journal of the mechanical behavior of biomedical materials
IF:3.3Q3
DOI:10.1016/j.jmbbm.2025.107007
PMID:40328110
|
研究论文 | 提出基于深度学习的高通量框架,用于预测人类颅骨三维结构与力学响应之间的关系 | 首次将三维颅骨微观结构与三维力学响应相关联,克服了传统方法仅能预测一维序列或二维截面力学属性的局限性 | 样本数量有限(40个颅骨样本),年龄分布较集中(平均82.5岁) | 建立颅骨三维微观结构与力学响应之间的关联关系 | 人类颅骨样本 | 医学影像分析 | 颅骨损伤 | micro-CT扫描,有限元模拟,准静态压缩实验 | 深度学习 | 三维医学影像 | 40个人类颅骨样本,从中提取2000个代表性体积单元 | NA | 优化后的U-Net | 预测值与真实值之间的相似度 | NA |
10336 | 2025-10-07 |
Worldwide research trends on artificial intelligence in head and neck cancer: a bibliometric analysis
2025-Jul, Oral surgery, oral medicine, oral pathology and oral radiology
DOI:10.1016/j.oooo.2025.02.014
PMID:40155307
|
文献计量分析 | 通过文献计量分析探索人工智能在头颈癌研究中的全球趋势 | 首次对人工智能在头颈癌领域的文献进行系统性文献计量分析,揭示了该领域的研究热点和发展趋势 | 仅基于Web of Science数据库,可能未涵盖所有相关文献;分析结果受数据库收录范围限制 | 分析人工智能在头颈癌研究中的全球发展趋势和研究热点 | 1995-2024年间发表的1,019篇人工智能相关头颈癌研究文献 | 医学信息学 | 头颈癌 | 文献计量分析 | 深度学习 | 文献数据 | 1,019篇论文 | VosViewer, Biblioshiny/Bibiometrix for R Studio | NA | NA | NA |
10337 | 2025-10-07 |
The role of deep learning in diagnostic imaging of spondyloarthropathies: a systematic review
2025-Jun, European radiology
IF:4.7Q1
DOI:10.1007/s00330-024-11261-x
PMID:39658683
|
系统评价 | 本系统评价评估了深度学习模型在脊柱关节病影像诊断中的应用效果 | 首次系统评价深度学习在脊柱关节病多模态影像(MRI、CT、X线)诊断中的综合表现,特别关注先进CNN和U-Net架构的性能 | 部分研究样本量较小,需要更大数据集和进一步前瞻性及外部验证以提高AI模型的泛化能力 | 评估深度学习模型在提高脊柱关节病影像诊断准确性方面的作用 | 脊柱关节病的医学影像数据 | 医学影像分析 | 脊柱关节病 | 医学影像分析 | CNN, U-Net | 医学影像(MRI、CT、X线) | 21项研究(具体样本量未明确说明) | NA | CNN, U-Net | AUC, 诊断准确率 | NA |
10338 | 2025-10-07 |
PET and CT based DenseNet outperforms advanced deep learning models for outcome prediction of oropharyngeal cancer
2025-Jun, Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology
IF:4.9Q1
DOI:10.1016/j.radonc.2025.110852
PMID:40118186
|
研究论文 | 本研究比较了传统DenseNet架构与先进深度学习模型在口咽癌患者无复发生存期预测中的性能 | 发现经过优化的传统DenseNet架构在外部测试中表现优于更复杂的先进模型,且去除GTV输入后性能反而提升 | 研究仅针对口咽癌患者,样本来源有限,需要更多验证 | 评估传统DenseNet架构在头颈癌预后预测中的性能表现 | 口咽癌患者 | 医学影像分析 | 口咽癌 | PET和CT影像分析 | DenseNet | 医学影像(PET、CT)、轮廓分割数据 | HECKTOR 2022数据集489例患者(训练集369例,测试集120例),外加400例外部测试患者 | NA | DenseNet81 | C-index | NA |
10339 | 2025-10-07 |
Advances in MRI optic nerve segmentation
2025-Jun, Multiple sclerosis and related disorders
IF:2.9Q2
DOI:10.1016/j.msard.2025.106437
PMID:40220726
|
综述 | 本文系统回顾了2007至2024年间视神经MRI分割技术的发展历程 | 首次全面梳理视神经MRI分割从传统强度方法到深度学习算法的演进路径,涵盖多图谱解决方案 | 仅纳入27篇同行评审文献,可能未覆盖所有相关研究 | 提升视神经相关疾病的早期诊断和治疗规划能力 | 视神经结构与神经退行性疾病(如多发性硬化症) | 医学影像分析 | 神经退行性疾病 | 磁共振成像(MRI) | 深度学习算法 | 医学影像 | 基于27篇文献的系统回顾 | NA | NA | NA | NA |
10340 | 2025-10-07 |
Identification of therapeutics against PfPK6 protein of Plasmodium falciparum: Structure and Deep Learning approach
2025-Jun, Experimental parasitology
IF:1.4Q3
DOI:10.1016/j.exppara.2025.108947
PMID:40288672
|
研究论文 | 通过结构方法和深度学习模型识别恶性疟原虫PfPK6蛋白的新型抑制剂 | 结合基于结构的虚拟筛选和深度学习模型识别新型PfPK6抑制剂,并验证其结合稳定性 | 仅通过计算模拟验证,需要实验验证抑制剂的实际效果 | 识别针对恶性疟原虫PfPK6蛋白的治疗药物 | 恶性疟原虫PfPK6蛋白及其抑制剂 | 计算生物学 | 疟疾 | 虚拟筛选,分子动力学模拟 | 深度学习 | 化合物结构数据 | 来自Tres Cantos抗疟数据集的小分子抑制剂化合物 | NA | NA | 结合亲和力(-13.553 kcal/mol),结合模式稳定性 | NA |