本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新(使用关键词“['deep learning']”过滤),已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!


除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价19.9元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
| 序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 | 算法框架 | 模型架构 | 性能指标 | 计算资源 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 10401 | 2025-10-06 |
Enhancing motor imagery EEG classification with a Riemannian geometry-based spatial filtering (RSF) method
2025-Aug, Neural networks : the official journal of the International Neural Network Society
IF:6.0Q1
DOI:10.1016/j.neunet.2025.107511
PMID:40294568
|
研究论文 | 提出一种基于黎曼几何的空间滤波方法用于增强运动想象脑电信号的分类性能 | 引入黎曼几何理论构建空间滤波方法,通过最大化不同类别协方差矩阵间的黎曼距离来提升特征判别能力 | NA | 提高运动想象脑电信号的分类准确率并减少计算时间 | 运动想象脑电信号 | 脑机接口 | 身体残疾 | 脑电图 | 多种机器学习模型 | 脑电信号 | 六个公开可用的运动想象脑机接口数据集 | NA | CSP-LDA, FBCSP, MDM, TSM, EEGNet, ShallowConvNet, DeepConvNet, FBCNet, Graph-CSPNet, LMDA-Net | 分类准确率, 计算时间 | NA |
| 10402 | 2025-10-06 |
Automatic segmentation of the midfacial bone surface from ultrasound images using deep learning methods
2025-Jul, International journal of oral and maxillofacial surgery
IF:2.2Q2
DOI:10.1016/j.ijom.2025.01.012
PMID:39880737
|
研究论文 | 本研究开发了一种基于深度学习的自动算法,用于从二维超声图像中分割中面部骨表面 | 首次将多种深度学习网络应用于中面部骨表面超声图像分割,并比较了六种不同网络的性能 | 研究仅针对中面部骨表面,未验证其他骨骼部位的分割效果 | 开发自动分割中面部骨表面的算法,为三维骨表面重建提供基础 | 中面部骨表面 | 计算机视觉 | NA | 超声成像 | 深度学习 | 超声图像 | NA | NA | nnU-Net, U-Net, ConvNeXt, Mask2Former, SegFormer, DDRNet | Dice系数, IoU, HD95, ASSD, 精确率, 召回率, 时间 | NA |
| 10403 | 2025-10-06 |
Advances in photoactivated carbon-based nanostructured materials for targeted cancer therapy
2025-Jul, Advanced drug delivery reviews
IF:15.2Q1
DOI:10.1016/j.addr.2025.115604
PMID:40354939
|
综述 | 探讨光激活碳基纳米材料在靶向癌症治疗中的关键创新与应用前景 | 系统阐述碳基纳米材料的光热、光化学和光声特性在靶向癌症治疗中的创新应用,并首次深入讨论机器学习在纳米颗粒研究与光疗中的整合潜力 | 面临重现性、制造通量和生物相容性等挑战,包括长期生物效应和降解特性需进一步验证 | 推动碳基纳米材料在靶向癌症光疗领域的发展与临床应用 | 碳基纳米材料及其衍生物 | 纳米医学 | 癌症(乳腺癌、肺癌、神经胶质瘤) | 光热疗法、光动力疗法、光化学内化、多模态方法 | 随机森林、支持向量机、神经网络、深度学习 | 实验数据、生物物理性能数据 | NA | NA | NA | NA | NA |
| 10404 | 2025-10-06 |
Comparative analysis of kidney function prediction: traditional statistical methods vs. deep learning techniques
2025-Jun, Clinical and experimental nephrology
IF:2.2Q2
DOI:10.1007/s10157-024-02616-1
PMID:39813007
|
研究论文 | 比较传统统计方法与深度学习技术在预测肾功能方面的性能差异 | 首次在日本全国性CKD登记数据库中使用GRU-D等深度学习模型处理缺失值并预测肾功能 | 深度学习技术在此研究中未显示出优于传统统计方法的预测准确性 | 评估深度学习技术是否比传统统计方法能更准确地预测未来肾功能 | 慢性肾病患者 | 机器学习 | 慢性肾病 | 电子健康记录分析 | FFNN, GRU-D, 多元线性回归 | 临床登记数据 | 22,929名CKD患者 | NA | 前馈神经网络, GRU-D | 均方根误差(RMSE) | NA |
| 10405 | 2025-10-06 |
Generative artificial intelligence enables the generation of bone scintigraphy images and improves generalization of deep learning models in data-constrained environments
2025-Jun, European journal of nuclear medicine and molecular imaging
IF:8.6Q1
DOI:10.1007/s00259-025-07091-8
PMID:39878897
|
研究论文 | 本研究利用生成式人工智能生成骨闪烁扫描图像,并通过合成数据增强提升深度学习模型在数据受限环境中的泛化能力 | 开发了能够生成代表不同疾病模式的高质量合成骨闪烁扫描图像的生成模型,并验证了合成数据对提升模型泛化性能的有效性 | 研究仅基于单一中心的训练数据,且仅针对两种特定疾病模式进行验证 | 解决医学影像中深度学习模型因数据稀缺而泛化能力不足的问题 | 骨闪烁扫描图像,重点关注骨转移和心脏淀粉样变性两种疾病模式 | 医学影像分析 | 骨转移,心脏淀粉样变性 | 骨闪烁扫描技术 | 生成模型,深度学习分类模型 | 医学影像 | 训练集:9,170名患者的骨闪烁扫描;测试集:6,448名患者的7,472次扫描 | NA | NA | AUC,准确率,Fleiss' kappa,log-rank检验 | NA |
| 10406 | 2025-10-06 |
Robust whole-body PET image denoising using 3D diffusion models: evaluation across various scanners, tracers, and dose levels
2025-Jun, European journal of nuclear medicine and molecular imaging
IF:8.6Q1
DOI:10.1007/s00259-025-07122-4
PMID:39912940
|
研究论文 | 提出并验证了一种基于3D扩散模型的全身PET图像去噪方法,能够适应不同扫描仪、示踪剂和剂量水平 | 首次将3D Denoising Diffusion Probabilistic Model应用于全身PET图像去噪,实现了跨多种临床场景的鲁棒性能 | 模型训练主要基于Biograph Vision Quadra PET/CT扫描仪的高质量数据 | 开发一种能够适应多种PET协议的鲁棒性全身PET图像去噪方法 | 全身PET图像 | 医学影像处理 | 癌症 | PET成像 | DDPM | 3D医学图像 | 来自4台扫描仪、4种示踪剂类型和6个剂量水平的数据集 | NA | 3D卷积网络 | 去噪性能,不确定性图方差 | NA |
| 10407 | 2025-10-06 |
Integrating generative AI with neurophysiological methods in psychiatric practice
2025-Jun, Asian journal of psychiatry
IF:3.8Q1
DOI:10.1016/j.ajp.2025.104499
PMID:40262408
|
综述 | 探讨生成式AI与神经生理学方法在精神病学实践中的整合潜力与应用前景 | 首次系统提出生成式AI与神经科学、生理学方法在精神病学领域的协同整合框架 | 面临数据可靠性、隐私保护和资源限制等挑战 | 探索生成式AI如何增强精神病学临床实践和神经生理学研究 | 精神病学临床实践、神经生理学数据、心理症状模型 | 自然语言处理, 机器学习 | 精神疾病 | 深度学习, 神经生理学方法 | 大语言模型 | 多模态数据, 文本, 神经生理信号 | NA | NA | NA | NA | NA |
| 10408 | 2025-10-06 |
Sustainable water allocation under climate change: Deep learning approaches to predict drinking water shortages
2025-Jun, Journal of environmental management
IF:8.0Q1
DOI:10.1016/j.jenvman.2025.125600
PMID:40345087
|
研究论文 | 本研究采用深度学习方法预测德黑兰饮用水短缺问题,为可持续水资源分配提供前瞻性解决方案 | 结合循环神经网络与三种优化算法(FHO、WOA、HOA)的混合模拟模型,首次在德黑兰水资源管理中实现多模型比较和优化 | 研究依赖于气候模型的预测准确性,且未考虑突发性极端气候事件的影响 | 通过先进机器学习方法理解和缓解城市化、土地利用管理不善及气候变异对水资源的影响 | 德黑兰五个关键水坝水库和德黑兰含水层系统 | 机器学习 | NA | 混合模拟模型,气候模型(MRI-ESM2、CNRM-CM6-1、BCC-CSM2) | RNN, LSTM | 气候数据、水文数据、水资源分配数据 | 2021-2050年期间三种排放路径(SSP1.26、SSP2.45、SSP5.85)的预测数据 | NA | RNN-FHO, RNN-WOA, RNN-HOA混合架构 | 水坝流入量预测性能、地下水位波动预测精度 | NA |
| 10409 | 2025-06-01 |
Learnable fractional Fourier transform for high-quality computer-generated holography
2025-Jun-01, Optics letters
IF:3.1Q2
DOI:10.1364/OL.561347
PMID:40445699
|
research paper | 提出了一种基于深度学习的计算机生成全息术方法,通过分数傅里叶变换提升全息成像质量 | 提出了复数分数傅里叶网络(CFrFNet),整合分数傅里叶变换(FrFT)于空间-频率统一框架中,生成高保真相位全息图(POHs) | NA | 提升计算机生成全息术的成像质量 | 相位全息图(POHs) | computer vision | NA | 分数傅里叶变换(FrFT) | CFrFNet, FrFNM, MFEB | image | NA | NA | NA | NA | NA |
| 10410 | 2025-06-01 |
Machine Learning-Based Rupture Risk Prediction for Intracranial Aneurysms: A Systematic Review and Meta-Analysis
2025-May-30, Neurosurgery
IF:3.9Q1
DOI:10.1227/neu.0000000000003531
PMID:40444989
|
meta-analysis | 本文通过系统综述和荟萃分析评估了机器学习在预测颅内动脉瘤破裂风险中的应用,并与PHASES评分进行了比较 | 机器学习模型在预测颅内动脉瘤破裂风险中展现出比传统PHASES评分更高的特异性,且结合血流动力学参数可进一步提升模型准确性 | 需要前瞻性研究来验证机器学习模型在临床整合中的实用性 | 评估机器学习在预测颅内动脉瘤破裂风险中的应用效果 | 颅内动脉瘤患者 | machine learning | cardiovascular disease | machine learning | deep learning | clinical data | 36项研究,涉及22,462名患者 | NA | NA | NA | NA |
| 10411 | 2025-06-01 |
Phantom-Based Ultrasound-ECG Deep Learning Framework for Prospective Cardiac Computed Tomography
2025-May-30, IEEE transactions on bio-medical engineering
DOI:10.1109/TBME.2025.3575268
PMID:40445820
|
研究论文 | 提出了一种结合超声和心电图数据的多模态深度学习框架,用于预测心脏静止期以优化CT血管造影门控 | 首次将超声和心电图数据结合使用3D CNN和ANN的多模态框架,提高了心脏静止期预测的准确性,特别是在心律失常情况下 | 在较短的心脏静止期(<100ms)预测准确性相对较低 | 优化CT血管造影门控,提高心脏静止期预测的准确性 | 心脏静止期 | 医学影像分析 | 心血管疾病 | 超声、心电图、CT血管造影 | 3D CNN、ANN | 超声图像、心电图信号 | 使用动态心脏运动模型模拟多种心脏条件(包括心律失常)进行验证 | NA | NA | NA | NA |
| 10412 | 2025-06-01 |
Integrating Motor Unit Activity With Deep Learning for Real-Time, Simultaneous and Proportional Wrist Angle and Grasp Force Estimation
2025-May-30, IEEE transactions on bio-medical engineering
DOI:10.1109/TBME.2025.3575252
PMID:40445821
|
research paper | 提出了一种结合运动单元活动与深度学习的框架,用于实时、同步和比例估计手腕角度和抓握力 | 整合了运动神经元放电的神经驱动计算与模块化LSTM神经网络,实现了对运动学和动力学的同步比例解码 | 实验仅涉及10名受试者,样本量较小 | 提高肌电假肢对运动学和动力学的实时、同步和比例解码能力 | 手腕角度和抓握力的估计 | machine learning | NA | 高密度表面肌电图分解 | LSTM | 肌电信号 | 10名受试者 | NA | NA | NA | NA |
| 10413 | 2025-06-01 |
Load demand forecasting in air conditioning a rotor Hopfield neural network approach optimized by a new optimization algorithm
2025-May-29, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-025-02568-w
PMID:40436955
|
研究论文 | 本文提出了一种新的改进转子Hopfield神经网络(RHNN)与分数阶季节优化算法(FO-SOA)相结合的方法,用于空调系统的负荷需求预测 | 结合了改进的转子Hopfield神经网络和分数阶季节优化算法,优化了负荷需求预测的准确性和可靠性 | 未提及具体的数据来源和样本量细节,可能影响方法的普适性验证 | 优化空调系统的负荷需求预测,以提高能源管理效率和室内环境舒适度 | 空调系统的负荷需求 | 机器学习 | NA | 分数阶季节优化算法(FO-SOA) | 转子Hopfield神经网络(RHNN) | 历史负荷数据、环境温度、湿度、占用模式等 | NA | NA | NA | NA | NA |
| 10414 | 2025-06-01 |
Predicting abnormal fetal growth using deep learning
2025-May-29, NPJ digital medicine
IF:12.4Q1
DOI:10.1038/s41746-025-01704-0
PMID:40437236
|
研究论文 | 本研究利用深度学习技术提高胎儿生长异常预测的准确性 | 开发了一种深度学习模型,在检测SGA和LGA方面显著优于当前临床标准Hadlock公式,并减少了人口统计学和技术变量上的偏差 | 未提及模型在临床实际应用中的潜在挑战或局限性 | 提高胎儿生长异常的预测准确性 | 胎儿生长异常(SGA和LGA) | 数字病理 | 胎儿生长异常 | 深度学习 | 深度学习模型 | 超声图像 | 65,752名患者的94,538次检查产生的433,096张超声图像 | NA | NA | NA | NA |
| 10415 | 2025-06-01 |
Leveraging deep learning and graph analysis for enhanced course recommendations in online education
2025-May-28, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-025-02156-y
PMID:40436884
|
研究论文 | 本研究提出了一种结合CNN和图分析的混合模型,用于提升在线教育中的课程推荐效果 | 结合CNN和图分析技术,解决冷启动问题并提供更个性化的课程推荐 | 研究仅基于单一大学的数据,可能无法泛化到其他教育机构 | 开发有效的定制化推荐系统以提高学生参与度和教育表现 | 在线教育平台的学生和课程数据 | 机器学习 | NA | CNN, 图分析 | CNN | 学生记录、教育表现数据和课程信息 | 12,898名学生(来自伊朗伊斯兰阿扎德大学电子校园) | NA | NA | NA | NA |
| 10416 | 2025-06-01 |
A multi-task learning model for global soil moisture prediction based on adaptive weight allocation
2025-May-28, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-025-01894-3
PMID:40436892
|
研究论文 | 提出了一种基于动态权重分配的自适应权重长短期记忆(AW-LSTM)模型,用于全球土壤湿度预测 | 通过计算任务间的相关系数动态优化模型权重,提高了预测精度 | 未提及模型在其他地理区域或不同时间尺度上的泛化能力 | 提高全球土壤湿度预测的准确性 | 全球土壤湿度数据 | 机器学习 | NA | 深度学习 | LSTM | 时间序列数据 | 未明确提及样本数量 | NA | NA | NA | NA |
| 10417 | 2025-06-01 |
A novel deep learning model based on YOLOv5 optimal method for coal gangue image recognition
2025-May-28, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-025-01312-8
PMID:40436918
|
研究论文 | 本文研究了一种基于YOLOv5优化方法的深度学习模型,用于煤矸石图像识别 | 结合多通道注意力机制和轻量级内容感知特征重组上采样算子,显著提高了模型置信度和识别性能 | 需要大量标注数据集且存在过拟合风险 | 实现煤矸石的自动化在线处理 | 煤矸石图像 | 计算机视觉 | NA | 深度学习 | YOLOv5 | 图像 | NA | NA | NA | NA | NA |
| 10418 | 2025-06-01 |
Deep learning reconstruction enhances tophus detection in a dual-energy CT phantom study
2025-May-28, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-025-03012-9
PMID:40436916
|
研究论文 | 本研究比较了两种深度学习重建(DLR)技术与两种传统方法在双能CT中检测尿酸钠(MSU)的效果 | DLR技术在MSU检测中表现出优于传统方法的性能,包括更高的检测灵敏度、更好的图像对比度、更低的图像噪声和更少的辐射暴露 | 需要进一步研究评估该方法的临床可靠性 | 比较不同重建技术在双能CT中检测MSU的效果 | 体外生物模型和光栅模型中的MSU | 医学影像 | 痛风 | 双能CT(DECT) | 深度学习重建(DLR) | CT图像 | 体外生物模型和光栅模型 | NA | NA | NA | NA |
| 10419 | 2025-06-01 |
Mitigating malicious denial of wallet attack using attribute reduction with deep learning approach for serverless computing on next generation applications
2025-May-28, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-025-01178-w
PMID:40436925
|
研究论文 | 本文提出了一种基于深度学习和属性减少的方法(MMDoWA-ARDL),用于检测和缓解下一代应用中的服务器无计算环境中的恶意钱包拒绝攻击 | 提出了一种新颖的框架,结合了深度学习和属性减少技术,有效地检测和缓解服务器无计算环境中的恶意攻击 | NA | 检测和缓解服务器无计算环境中的恶意钱包拒绝攻击 | 服务器无计算环境中的恶意攻击 | 机器学习 | NA | 深度学习,属性减少,优化算法 | Bi-directional LSTM multi-head self-attention network (BMNet) | NA | 基准数据集 | NA | NA | NA | NA |
| 10420 | 2025-06-01 |
Enhancing Security in CPS Industry 5.0 using Lightweight MobileNetV3 with Adaptive Optimization Technique
2025-May-28, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-025-00496-3
PMID:40436957
|
研究论文 | 本研究提出了一种基于深度学习的方法,旨在通过结合MobileNetV3和自适应优化技术增强工业5.0中CPS的安全性 | 结合轻量级MobileNetV3和混沌帐篷美洲狮优化(CTPOA)技术,以及AES加密与自主访问控制,提供高性能和强安全性 | 未提及具体在哪些工业场景下进行了测试,以及模型在其他数据集上的泛化能力 | 增强工业5.0中CPS的安全性,识别和阻止高级网络攻击 | 工业5.0中的CPS系统 | 机器学习 | NA | 深度学习,数据预处理(高斯滤波、均值填补、最小-最大归一化),特征提取(流式、时间、统计和深度特征) | MobileNetV3, ResNet-101 | IoT23数据集 | NA | NA | NA | NA | NA |