本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新(使用关键词“['deep learning']
”过滤),已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!
除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价19.9元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 | 算法框架 | 模型架构 | 性能指标 | 计算资源 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
10441 | 2025-05-18 |
Time Scale Network: An Efficient Shallow Neural Network For Time Series Data in Biomedical Applications
2025-Jan, IEEE journal of selected topics in signal processing
IF:8.7Q1
DOI:10.1109/JSTSP.2024.3443659
PMID:40370581
|
研究论文 | 本文提出了一种高效的时间尺度网络(Time Scale Network),用于处理生物医学应用中的时间序列数据 | 结合离散小波变换的平移和膨胀序列与传统卷积神经网络及反向传播,显著减少参数和操作数量,同时学习多时间尺度的特征 | 未明确提及具体限制,但可能受限于信号类型的普适性验证 | 开发一种计算效率高、参数少且易于解释的时间序列分类网络 | 生物医学时间序列数据(如ECG和EEG信号) | 机器学习 | 心血管疾病(心房功能障碍)和神经系统疾病(癫痫) | 离散小波变换与CNN结合 | Time Scale Network(基于CNN的改进模型) | 时间序列数据(ECG和EEG信号) | 未明确提及具体样本量 | NA | NA | NA | NA |
10442 | 2025-05-18 |
Apple varieties, diseases, and distinguishing between fresh and rotten through deep learning approaches
2025, PloS one
IF:2.9Q1
DOI:10.1371/journal.pone.0322586
PMID:40373081
|
研究论文 | 本文通过深度学习方法区分苹果品种、新鲜与腐烂状态以及疾病,并提出了新的数据集和优化模型 | 提出了三个新的数据集(AFVC、AFQC、ADEC)和一个优化的苹果园模型(OAOM),使用新的损失函数MFCE提高模型效率 | 未提及模型在不同环境或光照条件下的泛化能力 | 提高苹果品种识别、新鲜度判断和疾病检测的自动化系统性能 | 苹果的品种、新鲜与腐烂状态以及疾病 | 计算机视觉 | NA | 深度学习 | OAOM(优化的苹果园模型) | 图像 | AFVC包含29,750张图像(85类),AFQC包含2,320张图像,ADEC包含2,976张图像(7类) | NA | NA | NA | NA |
10443 | 2025-05-18 |
Comprehensive analysis of SQOR involvement in ferroptosis resistance of pancreatic ductal adenocarcinoma in hypoxic environments
2025, Frontiers in immunology
IF:5.7Q1
DOI:10.3389/fimmu.2025.1513589
PMID:40375994
|
research paper | 本研究通过构建深度学习模型评估胰腺导管腺癌(PDAC)的缺氧特征,并探讨硫化物醌氧化还原酶(SQOR)在缺氧介导的铁死亡抵抗中的作用 | 建立了基于全切片图像(WSIs)的PDAC缺氧检测模型,揭示了SQOR在缺氧环境下通过增强铁死亡抵抗促进PDAC恶性进展的新机制 | 研究主要基于体外缺氧细胞模型和裸鼠异种移植模型,临床样本验证仍需进一步开展 | 探究PDAC缺氧特征与SQOR介导的铁死亡抵抗机制,为靶向治疗提供依据 | 胰腺导管腺癌(PDAC)组织、体外缺氧细胞模型及裸鼠异种移植模型 | digital pathology | pancreatic cancer | multi-omics数据分析、全切片图像(WSIs)深度学习建模 | 深度学习模型(未明确具体架构) | 病理图像、多组学数据 | 未明确样本数量,涉及PDAC组织、体外细胞模型及裸鼠模型 | NA | NA | NA | NA |
10444 | 2025-05-18 |
Deep learning techniques for detecting freezing of gait episodes in Parkinson's disease using wearable sensors
2025, Frontiers in physiology
IF:3.2Q2
DOI:10.3389/fphys.2025.1581699
PMID:40376117
|
研究论文 | 本文提出了一种新颖的混合深度学习框架,用于通过可穿戴传感器检测帕金森病患者的步态冻结(FoG)发作 | 结合CNN进行空间特征提取、BiLSTM网络进行时间建模以及注意力机制增强可解释性,并关注关键步态特征 | NA | 检测帕金森病患者的步态冻结(FoG)发作,以改善临床监测和患者预后 | 帕金森病患者 | 机器学习 | 帕金森病 | 深度学习 | CNN, BiLSTM, 注意力机制 | 传感器数据 | 多模态数据集(包括tDCS FOG、DeFOG、Daily Living和Hantao's Multimodal) | NA | NA | NA | NA |
10445 | 2025-05-18 |
Providing a Prostate Cancer Detection and Prevention Method With Developed Deep Learning Approach
2025, Prostate cancer
IF:2.3Q3
DOI:10.1155/proc/2019841
PMID:40376132
|
研究论文 | 提出了一种基于深度学习的前列腺癌检测和预防方法,利用组织病理学图像进行诊断 | 开发了一种基于流形模型的深度学习方法,结合Tile和Grad-CAM特性,提高了前列腺癌诊断的准确性 | 研究仅基于一个治疗中心的组织病理学图像,样本来源有限 | 开发前列腺癌的诊断和预防方法 | 前列腺癌患者 | 数字病理学 | 前列腺癌 | 深度学习 | 基于流形模型的深度学习 | 图像 | 来自一个治疗中心的组织病理学图像 | NA | NA | NA | NA |
10446 | 2025-05-18 |
Neurovision: A deep learning driven web application for brain tumour detection using weight-aware decision approach
2025 Jan-Dec, Digital health
IF:2.9Q2
DOI:10.1177/20552076251333195
PMID:40376570
|
research paper | 开发了一个基于深度学习的框架,用于从医学共振图像中分类潜在的脑肿瘤,并通过权重感知决策方法提高分类准确性 | 提出了一种新颖的权重感知决策机制,有效处理多类分类中的平局情况,优于传统的基于多数的方法 | 未提及具体的数据集来源和样本多样性,可能影响模型的泛化能力 | 提高脑肿瘤的自动检测和分类准确性 | 脑肿瘤的医学共振图像 | digital pathology | brain tumour | deep learning | DenseNet169, VGG-19, Xception, EfficientNetV2B2 | image | 三个不同的数据集,具体样本数量未提及 | NA | NA | NA | NA |
10447 | 2025-05-18 |
The application of ultrasound artificial intelligence in the diagnosis of endometrial diseases: Current practice and future development
2025 Jan-Dec, Digital health
IF:2.9Q2
DOI:10.1177/20552076241310060
PMID:40376569
|
综述 | 本文回顾了人工智能在子宫内膜疾病超声图像分析中的进展,重点关注其在诊断、决策支持和预后分析中的应用 | 介绍了人工智能如何通过机器学习和深度学习从超声数据中提取有价值的信息,提升超声诊断能力 | 总结了当前研究的挑战,但未提及具体的技术或数据限制 | 推进超声人工智能技术在子宫内膜疾病诊断中的应用,通过数字工具改善女性健康 | 子宫内膜疾病的超声图像 | 数字病理学 | 子宫内膜疾病 | 机器学习和深度学习 | NA | 超声图像 | NA | NA | NA | NA | NA |
10448 | 2025-05-18 |
YOLOv8 framework for COVID-19 and pneumonia detection using synthetic image augmentation
2025 Jan-Dec, Digital health
IF:2.9Q2
DOI:10.1177/20552076251341092
PMID:40376574
|
研究论文 | 本研究开发了一个结合合成图像增强和深度学习模型的框架,用于COVID-19和肺炎的早期准确检测 | 整合了合成图像增强、YOLOv8模型和可解释AI技术(XAI),提高了诊断准确性和模型的可信度 | 未来研究需要进一步优化性能,开发临床可行的诊断工作流程 | 提高COVID-19和肺炎的医学影像检测准确性和可信度 | COVID-19和肺炎的医学影像数据 | 计算机视觉 | COVID-19和肺炎 | 合成图像增强、深度学习、可解释AI(XAI) | YOLOv8、InceptionV3、DenseNet、ResNet | 医学影像 | 未明确提及具体样本数量 | NA | NA | NA | NA |
10449 | 2025-10-07 |
Exploring Schizophrenia Classification Through Multimodal MRI and Deep Graph Neural Networks: Unveiling Brain Region-Specific Weight Discrepancies and Their Association With Cell-Type Specific Transcriptomic Features
2024-12-20, Schizophrenia bulletin
IF:5.3Q1
DOI:10.1093/schbul/sbae069
PMID:38754993
|
研究论文 | 本研究利用多模态MRI数据和深度图神经网络开发精神分裂症分类方法,并探索脑区特异性权重差异与细胞类型特异性转录组特征的关联 | 将MRI数据表示为图结构,采用图注意力网络进行特征提取和分类,结合Grad-CAM提供可解释性分析,并关联脑区基因表达数据 | 样本来源仅限于7家医院,未提及外部验证结果 | 提升精神分裂症的诊断准确性,发现客观生物标志物 | 683名精神分裂症患者和606名健康对照者 | 医学影像分析 | 精神分裂症 | 结构MRI, 功能MRI, 基因表达分析 | 图注意力网络(GAT), 图卷积网络 | 医学影像, 基因表达数据 | 1289名参与者(683患者+606对照)来自7家医院 | NA | 图注意力网络 | 准确率, 灵敏度, 特异性 | NA |
10450 | 2025-10-07 |
Interpretable deep learning for deconvolutional analysis of neural signals
2024-Dec-02, bioRxiv : the preprint server for biology
DOI:10.1101/2024.01.05.574379
PMID:38260512
|
研究论文 | 提出一种可解释深度学习框架DUNL,用于神经信号的解卷积分析 | 首次将算法展开方法应用于稀疏解卷积神经网络设计,实现网络权重与刺激驱动单神经元活动的直接关联解释 | NA | 开发可解释深度学习方法以理解神经活动机制 | 多个脑区的神经信号,包括中脑多巴胺神经元、体感丘脑、梨状皮层和纹状体 | 机器学习 | NA | 神经信号记录 | 深度学习, 稀疏解卷积神经网络 | 神经信号 | NA | NA | 解卷积展开神经网络学习(DUNL) | NA | NA |
10451 | 2025-10-07 |
Ultrasensitive plasma-based monitoring of tumor burden using machine-learning-guided signal enrichment
2024-Jun, Nature medicine
IF:58.7Q1
DOI:10.1038/s41591-024-03040-4
PMID:38877116
|
研究论文 | 介绍MRD-EDGE平台,一种基于机器学习的ctDNA检测方法,用于超灵敏监测肿瘤负荷 | 开发了机器学习指导的WGS ctDNA检测平台,将SNV信噪比富集提高约300倍,并将CNV检测所需非整倍性程度从1Gb降低至200Mb | NA | 通过提高ctDNA检测灵敏度来实现微小残留病灶和治疗反应的超灵敏监测 | 循环肿瘤DNA(ctDNA) | 机器学习 | 肺癌,结直肠癌,黑色素瘤 | 全基因组测序(WGS) | 深度学习 | 基因组测序数据 | NA | NA | NA | 信噪比富集,检测灵敏度 | NA |
10452 | 2025-05-17 |
SagMSI: A graph convolutional network framework for precise spatial segmentation in mass spectrometry imaging
2025-Jul-08, Analytica chimica acta
IF:5.7Q1
DOI:10.1016/j.aca.2025.344098
PMID:40374250
|
研究论文 | 提出了一种基于图卷积网络(GCN)的无监督分割策略SagMSI,用于质谱成像(MSI)数据的精确空间分割 | 结合了MSI数据的空间感知图构建与GCN模块,能够灵活、有效且精确地进行空间分割 | 未提及具体局限性 | 解决MSI数据在空间分割中的复杂性问题,提升分割精度 | 质谱成像(MSI)数据 | 数字病理 | NA | 质谱成像(MSI) | 图卷积网络(GCN) | 图像 | 模拟数据和多种MSI实验数据集 | NA | NA | NA | NA |
10453 | 2025-05-17 |
PursuitNet: A deep learning model for predicting competitive pursuit-like behavior in mice
2025-Jul-01, Brain research
IF:2.7Q3
DOI:10.1016/j.brainres.2025.149634
PMID:40210144
|
research paper | 介绍了一种名为PursuitNet的深度学习模型,用于预测小鼠在竞争性追逐行为中的实时动态 | PursuitNet采用轻量级架构,结合图卷积网络(GCN)和时序卷积网络(TCN),显式建模动态交互和空间关系,融合速度和加速度数据以预测变化 | 该框架专注于快速变化的轨迹,可能不适用于其他类型的运动行为 | 研究捕食者-猎物动态,为交互式机器人和自主系统的设计提供信息 | 实验室小鼠追逐磁控机器人诱饵的行为 | machine learning | NA | deep learning | Graph Convolutional Networks (GCN), Temporal Convolutional Networks (TCN) | trajectory data | Pursuit-Escape Confrontation (PEC) dataset | NA | NA | NA | NA |
10454 | 2025-05-17 |
A novel method for online sex sorting of silkworm pupae (Bombyx mori) using computer vision combined with deep learning
2025-Jun, Journal of the science of food and agriculture
IF:3.3Q2
DOI:10.1002/jsfa.14177
PMID:39936219
|
研究论文 | 提出了一种基于计算机视觉和深度学习的蚕蛹性别在线分选新方法 | 开发了结合级联空间通道注意力(CSCA)和G-GhostNet的新型实时性别识别模型,并提出了新的损失函数以减少模型复杂度和避免过拟合 | NA | 提高蚕蛹性别分选的效率和生产力 | 蚕蛹(家蚕) | 计算机视觉 | NA | 深度学习 | CSCA, G-GhostNet | 图像 | NA | NA | NA | NA | NA |
10455 | 2025-05-17 |
Predicting 5-Year EDSS in Multiple Sclerosis with LSTM Networks: A Deep Learning Approach to Disease Progression
2025-Jun, Journal of clinical neuroscience : official journal of the Neurosurgical Society of Australasia
IF:1.9Q4
DOI:10.1016/j.jocn.2025.111218
PMID:40174549
|
research paper | 该研究利用LSTM网络预测多发性硬化症患者5年后的EDSS评分,以评估疾病进展 | 与现有研究不同,该方法整合了多发性硬化症患者的静态和动态数据,实现了EDSS评分从0到10的准确预测,且预测误差最小 | 研究仅基于两个中心的1000名患者数据,可能限制了模型的泛化能力 | 预测多发性硬化症患者5年后的残疾状态评分(EDSS) | 多发性硬化症患者 | machine learning | 多发性硬化症 | LSTM | LSTM | 临床和人口统计学数据 | 1000名多发性硬化症患者 | NA | NA | NA | NA |
10456 | 2025-05-17 |
Developing the Artificial Intelligence Method and System for "Multiple Diseases Holistic Differentiation" in Traditional Chinese Medicine and Its Interpretability to Clinical Decision
2025-Jun, Journal of evidence-based medicine
DOI:10.1111/jebm.70016
PMID:40176367
|
研究论文 | 本研究开发了一种结合先验规则和深度学习的中医人工智能方法及系统,用于提升中医多病整体辨证的临床决策透明度和可解释性 | 提出了TCM-SEI-RD方法和TCM-MDHD系统,融合BERT与CNN模型捕捉特征相关序列,并通过分层模块预测多种中医证候 | 未明确提及具体样本量及外部验证结果 | 开发可解释性强的中医AI临床决策支持系统 | 中医多病整体辨证(MDHD)的证候要素 | 自然语言处理 | 中医多病种 | 深度学习 | BERT-CNN混合模型 | 文本(专家知识数据集) | NA | NA | NA | NA | NA |
10457 | 2025-05-17 |
A comprehensive image dataset for accurate diagnosis of betel leaf diseases using artificial intelligence in plant pathology
2025-Jun, Data in brief
IF:1.0Q3
DOI:10.1016/j.dib.2025.111564
PMID:40371167
|
research paper | 该研究旨在开发一个全面的槟榔叶病害图像数据集,以支持基于人工智能的植物病理学研究 | 首次提供了一个全面的槟榔叶病害图像数据集,填补了该领域的数据空白 | 数据集仅包含两种常见病害(叶腐病和叶斑病),可能无法覆盖所有槟榔叶病害类型 | 开发可靠的槟榔叶病害诊断工具,支持农业可持续发展 | 槟榔叶及其病害(叶腐病和叶斑病) | digital pathology | plant disease | image augmentation (flipping, brightness factor, contrast factor, rotation) | deep learning | image | 初始采集2,037张图像,通过数据增强扩展到10,185张图像 | NA | NA | NA | NA |
10458 | 2025-05-17 |
Patient-specific uncertainty calibration of deep learning-based autosegmentation networks for adaptive MRI-guided lung radiotherapy
2025-May-16, Physics in medicine and biology
IF:3.3Q1
DOI:10.1088/1361-6560/add640
PMID:40340988
|
research paper | 该研究提出了一种针对自适应MRI引导的肺癌放射治疗中深度学习自动分割网络的患者特异性不确定性校准方法 | 提出了一种患者特异性训练后不确定性校准方法,显著提高了深度学习自动分割模型的不确定性校准精度 | 研究样本量相对较小(122例肺癌患者),且GTV分割性能在基线模型中表现较差 | 提高自适应放射治疗中深度学习自动分割模型的不确定性校准精度 | 肺癌患者和其器官风险区域(OARs)及大体肿瘤体积(GTVs) | digital pathology | lung cancer | Monte Carlo Dropout (MCD) | 3D-U-Net | MRI图像 | 122例肺癌患者(80例训练集,19例验证集,23例测试集) | NA | NA | NA | NA |
10459 | 2025-05-17 |
Exploiting network optimization stability for enhanced PET image denoising using deep image prior
2025-May-16, Physics in medicine and biology
IF:3.3Q1
DOI:10.1088/1361-6560/add63f
PMID:40341245
|
研究论文 | 提出一种利用网络优化稳定性增强PET图像去噪的方法,基于条件深度图像先验(DIP) | 在条件DIP的优化过程中引入稳定性映射,通过多个中间输出来识别网络优化轨迹中的不稳定区域,从而提高去噪的可靠性和定量准确性 | 方法仅在脑部[F]FDG PET图像上进行了验证,未涉及其他类型PET数据或更广泛的临床应用场景 | 提高PET图像去噪的可靠性和定量准确性 | PET图像 | 数字病理 | NA | 深度图像先验(DIP) | 条件DIP | 图像 | 8个高分辨率脑部PET数据集 | NA | NA | NA | NA |
10460 | 2025-05-17 |
Construction of Sonosensitizer-Drug Co-Assembly Based on Deep Learning Method
2025-May-16, Small (Weinheim an der Bergstrasse, Germany)
DOI:10.1002/smll.202502328
PMID:40376918
|
研究论文 | 本文介绍了一种基于深度学习的声敏剂-药物相互作用(SDI)模型,用于预测药物混合物的粒径 | 设计了多尺度交叉注意力机制来整合两种药物不同尺度子结构的特征表示,提高了预测准确性并允许分析分子结构对预测的影响 | 未明确说明模型在其他类型药物组合上的泛化能力 | 开发一种预测药物共组装粒径的深度学习方法 | 声敏剂和化疗药物的共组装纳米药物 | 机器学习 | 肝癌 | 深度学习 | 图神经网络 | 分子结构数据 | NA | NA | NA | NA | NA |