本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!
除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
10561 | 2024-12-21 |
CauDR: A causality-inspired domain generalization framework for fundus-based diabetic retinopathy grading
2024-06, Computers in biology and medicine
IF:7.0Q1
DOI:10.1016/j.compbiomed.2024.108459
PMID:38701588
|
研究论文 | 提出了一种基于因果关系的领域泛化框架CauDR,用于基于眼底图像的糖尿病视网膜病变分级 | 引入因果分析中的do-操作到模型架构中,提出了一种新的通用结构因果模型(SCM)来分析眼底图像中的虚假相关性,从而提高模型的泛化能力 | 未提及具体的局限性 | 开发一种能够跨领域泛化的糖尿病视网膜病变分级系统 | 基于眼底图像的糖尿病视网膜病变分级 | 计算机视觉 | 糖尿病视网膜病变 | 深度学习 | 结构因果模型(SCM) | 图像 | 重新组织了现有数据集为4DR基准,具体样本数量未提及 |
10562 | 2024-12-21 |
Diabetic retinopathy prediction based on vision transformer and modified capsule network
2024-06, Computers in biology and medicine
IF:7.0Q1
DOI:10.1016/j.compbiomed.2024.108523
PMID:38701591
|
研究论文 | 本文提出了一种基于微调视觉变换器和改进胶囊网络的混合深度学习方法,用于自动预测糖尿病视网膜病变的严重程度 | 创新点在于结合了微调视觉变换器和改进胶囊网络,并引入了功率法变换技术和对比度限制自适应直方图均衡技术进行预处理 | NA | 开发一种自动化方法来辅助糖尿病视网膜病变的诊断 | 糖尿病视网膜病变的严重程度 | 计算机视觉 | 糖尿病性视网膜病变 | 视觉变换器,胶囊网络 | 混合深度学习模型 | 图像 | 使用了四个数据集:APTOS、Messidor-2、DDR和EyePACS |
10563 | 2024-12-21 |
Attention-based convolutional neural network with multi-modal temporal information fusion for motor imagery EEG decoding
2024-06, Computers in biology and medicine
IF:7.0Q1
DOI:10.1016/j.compbiomed.2024.108504
PMID:38701593
|
研究论文 | 本文提出了一种结合卷积神经网络和自注意力机制的深度学习网络,用于融合多模态时间信息和全局依赖性,以解码运动想象脑电信号 | 创新点在于引入了自注意力机制来捕捉全局依赖性,并设计了卷积编码器来融合平均池化和方差池化的特征,同时提出了信号分割与重组的数据增强方法 | NA | 旨在提高运动想象脑电信号解码的准确性和泛化能力 | 运动想象脑电信号 | 机器学习 | NA | 卷积神经网络 (CNN) | 卷积神经网络 (CNN) | 脑电信号 (EEG) | BCI Competition IV-2a和BCI Competition IV-2b数据集 |
10564 | 2024-12-21 |
RTSeg-net: A lightweight network for real-time segmentation of fetal head and pubic symphysis from intrapartum ultrasound images
2024-06, Computers in biology and medicine
IF:7.0Q1
DOI:10.1016/j.compbiomed.2024.108501
PMID:38703545
|
研究论文 | 提出了一种轻量级的实时分割网络RTSeg-Net,用于从产时超声图像中分割胎儿头部和耻骨联合 | 引入了创新的分布偏移卷积块、标记化的多层感知器块和高效的特征融合块,显著提高了分割性能并减少了计算资源需求 | NA | 开发一种能够在硬件资源有限的系统上实现高精度实时分割的深度学习模型 | 胎儿头部和耻骨联合的分割 | 计算机视觉 | NA | 深度学习 | RTSeg-Net | 图像 | 两个不同的产时超声图像数据集 |
10565 | 2024-12-21 |
Fine-grained food image classification and recipe extraction using a customized deep neural network and NLP
2024-06, Computers in biology and medicine
IF:7.0Q1
DOI:10.1016/j.compbiomed.2024.108528
PMID:38718665
|
研究论文 | 本文提出了一种新的框架,结合深度神经网络和自然语言处理技术,用于食品图像分类和自动化食谱提取 | 本文提出了一个定制的轻量级深度卷积神经网络模型MResNet-50用于食品图像分类,并使用自然语言处理算法Word2Vec和Transformers进行自动化配料处理和食谱提取,同时构建了一个表示性的半结构化领域本体来存储菜肴、食品项和配料之间的关系 | NA | 解决食品图像分类和自动化食谱提取中的类内变异性和类间相似性问题 | 食品图像和食谱 | 计算机视觉 | NA | 深度学习 | CNN | 图像 | Food-101和UECFOOD256数据集 |
10566 | 2024-12-21 |
Deep continual learning for medical call incidents text classification under the presence of dataset shifts
2024-06, Computers in biology and medicine
IF:7.0Q1
DOI:10.1016/j.compbiomed.2024.108548
PMID:38718666
|
研究论文 | 本文旨在开发和评估一种深度分类器,能够在数据集偏移的情况下有效优先处理紧急医疗呼叫事件(EMCI)的生命威胁级别 | 首次探索使用真实EMCI数据进行持续学习(CL)方法,并证明了CL技术在适应数据分布变化方面的有效性 | NA | 开发和评估一种能够在数据集偏移情况下有效优先处理紧急医疗呼叫事件生命威胁级别的深度分类器 | 紧急医疗呼叫事件(EMCI)的生命威胁级别分类 | 自然语言处理 | NA | 持续学习(CL) | DistilBERT | 文本 | 1982746个独立的EMCI实例 |
10567 | 2024-12-21 |
A multi-instance tumor subtype classification method for small PET datasets using RA-DL attention module guided deep feature extraction with radiomics features
2024-05, Computers in biology and medicine
IF:7.0Q1
DOI:10.1016/j.compbiomed.2024.108461
PMID:38626509
|
研究论文 | 本文提出了一种基于RA-DL注意力模块的多实例肿瘤亚型分类方法,用于小规模PET数据集,结合放射组学特征和深度特征进行肿瘤亚型分类 | 本文创新性地使用了RA-DL注意力机制来引导深度网络提取互补的深度特征,增强了最终特征的表达能力并减少了冗余 | 本文未提及具体的局限性 | 实现小规模PET数据集上的肿瘤亚型精确分类 | 肝癌、肺癌和淋巴瘤的肿瘤亚型 | 计算机视觉 | 肺癌 | RA-DL注意力机制 | 支持向量机(SVM) | 图像 | 三个PET数据集,包括肝癌数据集、肺癌数据集和淋巴瘤数据集 |
10568 | 2024-12-21 |
Prediction of drug-target binding affinity based on deep learning models
2024-05, Computers in biology and medicine
IF:7.0Q1
DOI:10.1016/j.compbiomed.2024.108435
PMID:38608327
|
综述 | 本文综述了基于深度学习模型的药物-靶点结合亲和力预测的研究进展 | 本文介绍了深度学习技术在药物发现中的新机遇,特别是通过药物-靶点结合亲和力预测的应用 | 本文未详细讨论现有深度学习模型在实际药物发现中的具体应用限制 | 探讨深度学习技术在药物-靶点结合亲和力预测中的应用及其在药物发现领域的机遇与挑战 | 药物-靶点结合亲和力预测 | 机器学习 | NA | 深度学习 | 卷积神经网络(CNN)、图卷积神经网络(GCN)、循环神经网络(RNN)、强化学习(RL) | 数据集 | NA |
10569 | 2024-12-21 |
Noise-Generating and Imaging Mechanism Inspired Implicit Regularization Learning Network for Low Dose CT Reconstrution
2024-05, IEEE transactions on medical imaging
IF:8.9Q1
DOI:10.1109/TMI.2023.3347258
PMID:38145543
|
研究论文 | 本文提出了一种基于噪声生成和成像机制的全域隐式正则化学习网络,用于低剂量CT重建 | 该方法考虑了投影数据中固有噪声的统计特性以及正弦图和图像域的先验信息,并通过深度网络隐式学习正弦图和图像的正则化器,提供了一种更具解释性和有效性的重建过程 | NA | 提高低剂量CT重建的性能 | 低剂量CT图像重建 | 计算机视觉 | NA | 深度学习 | 深度神经网络 | 图像 | NA |
10570 | 2024-12-21 |
Unsupervised Fusion of Misaligned PAT and MRI Images via Mutually Reinforcing Cross-Modality Image Generation and Registration
2024-05, IEEE transactions on medical imaging
IF:8.9Q1
DOI:10.1109/TMI.2023.3347511
PMID:38147426
|
研究论文 | 提出了一种无监督的多阶段深度学习框架PAMRFuse,用于未对齐的PAT和MRI图像融合 | 首次尝试对未对齐的PAT和MRI图像进行信息融合,采用端到端的相互增强模式,实现跨模态图像生成和配准的联合优化 | 未提及具体的局限性 | 解决未对齐的PAT和MRI图像融合的挑战 | PAT和MRI图像的融合 | 计算机视觉 | NA | 深度学习 | 自注意力融合网络 | 图像 | 小动物的PAT和MRI图像,来自商业成像系统 |
10571 | 2024-12-21 |
Semi-Supervised Thyroid Nodule Detection in Ultrasound Videos
2024-05, IEEE transactions on medical imaging
IF:8.9Q1
DOI:10.1109/TMI.2023.3348949
PMID:38163305
|
研究论文 | 本文提出了一种基于超声视频的半监督甲状腺结节检测框架 | 创新点在于构建了相邻帧引导的检测骨干网络,并提出了伪标签适应策略以减少标注工作量 | NA | 旨在开发一种能够有效利用空间和时间信息进行甲状腺结节检测的方法 | 甲状腺结节在超声视频中的检测 | 计算机视觉 | 甲状腺疾病 | 深度学习 | CNN | 视频 | 996个横切面视图和1088个纵切面视图的超声视频 |
10572 | 2024-12-21 |
High-Frequency Space Diffusion Model for Accelerated MRI
2024-05, IEEE transactions on medical imaging
IF:8.9Q1
DOI:10.1109/TMI.2024.3351702
PMID:38194398
|
研究论文 | 本文提出了一种新的高频空间扩散模型(HFS-SDE),用于加速磁共振成像(MRI)重建 | 该模型专门针对高频空间进行扩散过程,确保低频区域的全采样确定性,并加速反向扩散的采样过程 | NA | 解决现有扩散模型在快速MRI成像中重建低频区域的不确定性和收敛时间长的问题 | 磁共振成像(MRI)重建 | 计算机视觉 | NA | 扩散模型 | SDE | 图像 | 使用公开的fastMRI数据集进行实验 |
10573 | 2024-12-21 |
Encoding Enhanced Complex CNN for Accurate and Highly Accelerated MRI
2024-05, IEEE transactions on medical imaging
IF:8.9Q1
DOI:10.1109/TMI.2024.3351211
PMID:38194397
|
研究论文 | 本文提出了一种编码增强的复杂卷积神经网络(EN2 complex CNN),用于高度欠采样的肺部MRI重建 | 该方法通过沿频率或相位编码方向进行卷积,模拟k空间采样机制,最大化利用k空间的编码相关性和完整性,并采用复杂卷积从复杂k空间数据中学习丰富的表示 | NA | 加速MRI成像并提高图像重建质量 | 肺部MRI图像 | 计算机视觉 | NA | 卷积神经网络(CNN) | 复杂卷积神经网络(complex CNN) | 图像 | 超极化129Xe和1H肺部MRI数据,6倍欠采样 |
10574 | 2024-12-21 |
LIT-Former: Linking In-Plane and Through-Plane Transformers for Simultaneous CT Image Denoising and Deblurring
2024-05, IEEE transactions on medical imaging
IF:8.9Q1
DOI:10.1109/TMI.2024.3351723
PMID:38194396
|
研究论文 | 本文研究了3D低剂量计算机断层扫描(CT)成像,提出了一种名为LIT-Former的模型,用于同时进行平面内去噪和平面外去模糊 | LIT-Former通过链接平面内和平面外Transformer,结合了卷积网络和Transformer网络的优势,设计了高效的多头自注意力模块(eMSM)和高效卷积前馈网络(eCFN) | NA | 开发一种能够同时进行平面内去噪和平面外去模糊的模型,以提高3D CT图像的质量 | 3D低剂量CT图像 | 计算机视觉 | NA | Transformer网络 | Transformer | 图像 | 模拟和临床数据集 |
10575 | 2024-12-21 |
Deep Omni-Supervised Learning for Rib Fracture Detection From Chest Radiology Images
2024-05, IEEE transactions on medical imaging
IF:8.9Q1
DOI:10.1109/TMI.2024.3353248
PMID:38215335
|
研究论文 | 本文提出了一种新的全监督目标检测网络ORF-Netv2,用于肋骨骨折检测,通过利用各种形式的标注数据来提高检测性能 | 提出了一个统一的全监督框架,能够利用全标注、弱标注和无标注数据进行训练,并引入了多分支全监督检测头和基于协同训练的动态标签分配策略 | NA | 开发一种标签高效的目标检测模型,减轻放射科医生的标注负担 | 肋骨骨折检测 | 计算机视觉 | NA | 深度学习 | 目标检测网络 | 图像 | 三个肋骨骨折数据集,包括胸部CT和X光图像 |
10576 | 2024-12-21 |
COSST: Multi-Organ Segmentation With Partially Labeled Datasets Using Comprehensive Supervisions and Self-Training
2024-05, IEEE transactions on medical imaging
IF:8.9Q1
DOI:10.1109/TMI.2024.3354673
PMID:38224508
|
研究论文 | 本文提出了一种名为COSST的两阶段框架,用于在部分标注的多器官分割数据集上进行统一模型的训练 | 提出了一个新颖的两阶段框架COSST,结合了全面的监督信号和自训练方法,并通过潜在空间中的异常检测来评估伪标签的可靠性 | 未提及具体的局限性 | 研究如何在部分标注的医学图像数据集上学习统一的模型,以充分利用这些数据集的协同潜力 | 多器官分割任务 | 计算机视觉 | NA | 自训练 | NA | 图像 | 12个CT数据集,包括一个公开数据集和三个私有数据集 |
10577 | 2024-12-21 |
Classifying alkaliphilic proteins using embeddings from protein language model
2024-05, Computers in biology and medicine
IF:7.0Q1
DOI:10.1016/j.compbiomed.2024.108385
PMID:38547659
|
研究论文 | 本文提出了一种利用蛋白质语言模型ESM-2(3B)的嵌入来分类嗜碱蛋白的新方法 | 首次尝试使用预训练的蛋白质语言模型嵌入来分类嗜碱蛋白 | NA | 开发一种计算方法来识别嗜碱蛋白,以促进蛋白质工程和设计 | 嗜碱蛋白和非嗜碱蛋白 | 机器学习 | NA | 蛋白质语言模型 | 深度学习框架 | 蛋白质序列 | 1,002个嗜碱蛋白和1,866个非嗜碱蛋白 |
10578 | 2024-12-21 |
Cross-patch feature interactive net with edge refinement for retinal vessel segmentation
2024-05, Computers in biology and medicine
IF:7.0Q1
DOI:10.1016/j.compbiomed.2024.108443
PMID:38608328
|
研究论文 | 提出了一种基于双解码器的跨块特征交互网络(CFI-Net),用于视网膜血管分割,通过边缘细化提高分割的连续性和完整性 | 提出了联合细化下采样方法(JRDM)和跨块交互注意力机制(CIAM),以及自适应空间上下文引导方法(ASCGM),以减少特征损失并增强多尺度空间通道特征 | 未提及具体的局限性 | 提高视网膜血管分割的准确性和连续性,辅助临床医生诊断视网膜疾病 | 视网膜血管的分割 | 计算机视觉 | NA | 深度学习 | 双解码器网络 | 图像 | 使用了两个视网膜图像数据集和一个冠状动脉造影数据集 |
10579 | 2024-12-21 |
H2MaT-Unet:Hierarchical hybrid multi-axis transformer based Unet for medical image segmentation
2024-05, Computers in biology and medicine
IF:7.0Q1
DOI:10.1016/j.compbiomed.2024.108387
PMID:38613886
|
研究论文 | 本文提出了一种基于分层混合多轴Transformer的Unet模型H2MaT-Unet,用于医学图像分割 | 引入了一种分层混合多轴注意力机制,结合了分层后特征数据和多轴注意力机制,增强了局部和全局特征交互,并引入了空间和通道重建卷积模块ScConv以增强特征聚合 | 未提及具体局限性 | 提高医学图像分割的准确性和效率 | 医学图像的分割和病灶定位 | 计算机视觉 | NA | 分层混合多轴注意力机制,空间和通道重建卷积模块ScConv | Unet | 图像 | 未提及具体样本数量 |
10580 | 2024-12-21 |
Anatomically aware dual-hop learning for pulmonary embolism detection in CT pulmonary angiograms
2024-05, Computers in biology and medicine
IF:7.0Q1
DOI:10.1016/j.compbiomed.2024.108464
PMID:38613894
|
研究论文 | 本文提出了一种基于深度学习的方法,结合计算机视觉和深度神经网络,用于在CT肺动脉造影中检测肺栓塞 | 本文的创新点包括:(1) 自动检测解剖结构;(2) 解剖结构感知的预训练;(3) 用于肺栓塞检测的双跳深度神经网络 | NA | 提高肺栓塞在CT肺动脉造影中的检测准确性和速度 | 肺栓塞在CT肺动脉造影中的检测 | 计算机视觉 | 心血管疾病 | 深度学习 | 深度神经网络 | 图像 | 多中心大规模的RSNA数据集 |