本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新(使用关键词“['deep learning']”过滤),已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!


除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价19.9元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
| 序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 | 算法框架 | 模型架构 | 性能指标 | 计算资源 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1041 | 2026-02-08 |
Deep Learning Reconstruction Enhances Lung Cancer CT Imaging
2026-Jan, Cureus
DOI:10.7759/cureus.100762
PMID:41640929
|
研究论文 | 本文通过一个病例研究,展示了超高清CT结合深度学习重建技术在评估肺尖部肿瘤中的应用 | 将超高清CT与深度学习重建技术结合,显著减少了图像噪声和伪影,提高了对肺尖部肿瘤与邻近结构关系的评估能力 | 仅基于单个病例研究,样本量有限,需要更大规模的研究来验证其普遍适用性 | 评估深度学习重建技术在增强肺癌CT成像质量方面的效果 | 一位70岁男性患者的右肺上叶腺癌 | 数字病理学 | 肺癌 | 超高清CT扫描,深度学习重建 | 深度学习模型 | CT图像 | 1例患者 | NA | NA | 图像质量改善,噪声和伪影减少 | NA |
| 1042 | 2026-02-08 |
A Deep Learning Model to Guide Personalized Mechanical Circulatory Support Use in Cardiogenic Shock Patients Undergoing PCI
2026-Jan, JACC. Advances
DOI:10.1016/j.jacadv.2025.102379
PMID:41609277
|
研究论文 | 开发并验证了一个深度学习模型,用于指导心源性休克患者在经皮冠状动脉介入治疗中个性化使用机械循环支持设备 | 开发了OPtiMCS深度学习模型,能够整合临床、血流动力学和代谢变量的纵向数据,预测多种不良结局,并通过模拟设备切换支持以患者为中心的治疗决策 | 需要外部验证和临床实践中的实施,模型基于历史数据(2004-2019年),可能未涵盖最新治疗进展 | 开发一个深度学习模型,以指导心源性休克患者在经皮冠状动脉介入治疗中个性化使用机械循环支持设备,改善预后 | 心源性休克并接受经皮冠状动脉介入治疗的患者,使用主动脉内球囊反搏或微轴流泵 | 机器学习 | 心血管疾病 | 深度学习 | 深度学习模型 | 临床、血流动力学和代谢变量的纵向向量 | 1,408名心源性休克患者 | PyTorch | TabNet | AUC | Google Colab |
| 1043 | 2026-02-08 |
Protein Structure Prediction Methods
2026, Advances in experimental medicine and biology
DOI:10.1007/978-3-032-07511-6_1
PMID:41652158
|
综述 | 本章综述了蛋白质结构预测方法的演变,从基于模板建模和自由建模到先进的混合和端到端深度学习方法 | 介绍了AlphaFold2和RoseTTAFold等端到端深度学习方法,以及蛋白质语言模型,这些方法通过神经网络直接从序列预测原子坐标,实现了接近实验的精度 | NA | 探索蛋白质结构预测方法的原理、进展及其对结构生物学领域的变革性影响 | 蛋白质结构预测方法 | 计算生物学 | NA | 基于模板建模(TBM)、自由建模(FM)、混合方法、端到端深度学习、蛋白质语言模型 | 神经网络 | 氨基酸序列 | NA | NA | AlphaFold2, RoseTTAFold | 接近实验精度 | NA |
| 1044 | 2026-02-08 |
Computational Ligand-Binding Site Prediction
2026, Advances in experimental medicine and biology
DOI:10.1007/978-3-032-07511-6_7
PMID:41652164
|
综述 | 本章综述了计算配体结合位点预测方法,包括结构对接、机器学习、深度学习及基于物理的分子动力学方法 | 特别关注了基于物理的Site Identification by Ligand Competitive Saturation (SILCS)技术及其优势 | NA | 介绍并比较计算机辅助药物设计中配体结合位点预测的各种方法 | 蛋白质和RNA上的配体结合位点 | 计算机辅助药物设计 | NA | 结构对接、机器学习、深度学习、分子动力学、SILCS技术 | NA | NA | NA | NA | NA | NA | NA |
| 1045 | 2026-02-08 |
Deep learning algorithm for predicting rapid progression of abdominal aortic aneurysm by integrating CT images and clinical features
2025-Nov-03, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-025-22167-z
PMID:41184332
|
研究论文 | 本研究开发并验证了一种端到端多模态深度学习模型,通过整合CT图像特征、几何特征和临床特征来预测腹主动脉瘤的快速进展 | 首次提出结合CT图像、几何特征和临床特征的多模态深度学习模型,显著提升了腹主动脉瘤快速进展的预测性能 | 研究为回顾性设计,数据来源于两家医院,可能存在选择偏倚,且模型需要进一步的外部验证 | 开发并验证一种多模态深度学习模型,以更准确地预测腹主动脉瘤的快速进展 | 腹主动脉瘤患者 | 数字病理学 | 心血管疾病 | CT成像 | 深度学习 | 图像, 临床数据 | 561名腹主动脉瘤患者,包含14,252张标注的CT轴位图像 | NA | ResNet | AUC, 准确率 | NA |
| 1046 | 2026-02-08 |
Novel fusion architecture of multi-location blood flow sounds for arteriovenous fistula stenosis diagnosis
2025-Nov, Computer methods and programs in biomedicine
IF:4.9Q1
DOI:10.1016/j.cmpb.2025.109022
PMID:40886696
|
研究论文 | 本文提出了一种基于多位置血流声音融合的架构,用于动静脉瘘狭窄诊断 | 引入了多位置融合架构(MPFA)结合位置元数据,通过通道融合和时间融合策略,利用多个血管段的声音信息提升诊断准确性,而非仅依赖模型复杂度增加 | 未明确说明数据采集的具体环境条件或潜在噪声干扰,且样本量未在摘要中详细披露 | 诊断动静脉瘘狭窄并确定其精确位置 | 动静脉瘘的血流声音数据 | 机器学习 | 心血管疾病 | 血流声音分析 | 深度学习模型 | 声音数据 | NA | NA | 通用模型和个体位置模型 | 准确率 | NA |
| 1047 | 2026-02-08 |
Interpretable deep multimodal-based tomato disease diagnosis and severity estimation
2025-Oct-29, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-025-21611-4
PMID:41162432
|
研究论文 | 本文提出了一种新颖的多模态深度学习算法,用于番茄病害诊断和严重程度估计 | 通过结合视觉图像和环境数据的多模态输入,提升了分类准确性和可解释性,并应用了LIME和SHAP等可解释AI技术 | 未明确说明算法的计算复杂度、泛化能力或在不同环境条件下的适用性限制 | 开发一种高效、可解释的番茄病害诊断和严重程度预测方法,以支持精准农业实践 | 番茄作物及其相关病害 | 计算机视觉, 自然语言处理 | 植物病害 | 深度学习 | CNN, RNN | 图像, 环境数据 | NA | NA | EfficientNetB0, RNN | 准确率 | NA |
| 1048 | 2026-02-08 |
Resolution enhancement and target segmentation of medical images based on the frequency-domain information in deep learning
2025-Aug-20, Applied optics
IF:1.7Q3
DOI:10.1364/AO.557903
PMID:40981883
|
研究论文 | 本文提出了一种基于频域信息的深度学习网络,用于增强医学图像分辨率并优化细胞分割 | 通过将图像映射到频域,独立处理振幅和相位信息,并采用融合策略恢复清晰图像,超越了传统空间域方法 | NA | 提高医学图像分辨率以优化细胞分割,支持癌症诊断和分级 | 数字病理图像中的细胞核 | 数字病理 | 癌症 | 深度学习 | CNN | 图像 | NA | NA | 频域分辨率网络 | NA | NA |
| 1049 | 2026-02-08 |
SynAnno: Interactive Guided Proofreading of Synaptic Annotations
2025-Aug-12, bioRxiv : the preprint server for biology
DOI:10.1101/2025.08.09.669342
PMID:40832296
|
研究论文 | 本文介绍了SynAnno,一种用于大规模连接组学数据集中突触注释交互式校对的新工具 | 开发了集成了结构化工作流程、优化遍历路径、3D迷你地图以及微调机器学习模型的交互式校对工具,以提升校对效率和准确性 | NA | 旨在通过交互式工具改进连接组学中突触注释的校对过程 | 大规模连接组学数据集中的突触注释 | 数字病理学 | NA | 深度学习 | NA | 图像 | 涉及七位神经科学专家的用户和案例研究 | PyTorch | NA | 校对速度、认知负荷、注释错误率 | NA |
| 1050 | 2026-02-08 |
Predicting Retinal Nerve Fiber Layer Thickness From Ocular Hypertension Treatment Study Optic Disc Photographs
2025-08-01, JAMA ophthalmology
IF:7.8Q1
DOI:10.1001/jamaophthalmol.2025.1740
PMID:40569586
|
研究论文 | 本研究利用深度学习模型从眼压治疗研究的视盘照片中预测视网膜神经纤维层厚度,并评估其作为原发性开角型青光眼风险因素的有效性 | 首次使用深度学习模型从视盘照片预测RNFL厚度,并将其作为青光眼发展的风险因素进行评估 | 研究基于特定队列(OHTS),可能无法推广到其他人群;模型预测依赖于照片质量 | 预测RNFL厚度并评估其作为原发性开角型青光眼风险因素的有效性 | 眼压升高但无青光眼的患者 | 数字病理学 | 青光眼 | 深度学习 | 深度学习模型 | 图像 | 1636名参与者的3272只眼睛,共66714张视盘照片 | NA | M2M模型 | 风险比, 置信区间, P值 | NA |
| 1051 | 2026-02-08 |
Predicting RNA structure and dynamics with deep learning and solution scattering
2025-Feb-04, Biophysical journal
IF:3.2Q2
DOI:10.1016/j.bpj.2024.12.024
PMID:39722452
|
研究论文 | 本文介绍了一种名为SCOPER的RNA溶液构象预测工具,该工具结合了基于运动学的构象采样和深度学习模型IonNet,用于预测RNA在溶液中的结构和动力学,并通过小角X射线散射(SAXS)数据进行验证 | 开发了SCOPER管道,整合了构象采样与创新的深度学习模型IonNet来预测Mg离子结合位点,解决了RNA结构预测中缺乏离子和构象可塑性的挑战 | 需要初始足够准确的结构作为输入,且可能因过度调整可塑性和离子密度而导致过拟合实验SAXS数据 | 预测RNA在溶液中的结构和动力学,并通过SAXS数据验证结构预测的准确性 | RNA分子及其在溶液中的构象 | 机器学习 | NA | 小角X射线散射(SAXS) | 深度学习模型 | 结构数据,SAXS数据 | 14个实验数据集 | NA | IonNet | SAXS剖面拟合质量 | NA |
| 1052 | 2026-02-08 |
Deep Learning Analysis of Google Street View to Assess Residential Built Environment and Cardiovascular Risk in a U.S. Midwestern Retrospective Cohort
2025-Feb-04, European journal of preventive cardiology
IF:8.4Q1
DOI:10.1093/eurjpc/zwaf038
PMID:39903569
|
研究论文 | 本研究利用Google街景图像和深度学习技术,分析住宅周围建筑环境特征与心血管事件风险之间的关系 | 首次结合Google街景图像和深度学习技术,大规模量化评估建筑环境特征(如绿化和人行道)与心血管风险的关联 | 研究为回顾性队列设计,需未来研究验证关联性并深入理解其机制 | 探究建筑环境特征(包括住宅绿化和人行道)与心血管风险之间的关系 | 美国俄亥俄州东北部地区的居民 | 计算机视觉 | 心血管疾病 | Google街景图像分析 | 深度学习模型 | 图像 | 49,887名个体 | NA | NA | 风险比(HR),95%置信区间 | NA |
| 1053 | 2026-02-08 |
Transforming cervical cancer pathological diagnosis through artificial intelligence: progress, performance, and barriers to clinical implementation
2025, Frontiers in oncology
IF:3.5Q2
DOI:10.3389/fonc.2025.1716018
PMID:41640440
|
综述 | 本系统综述评估了人工智能技术在宫颈癌病理诊断中的应用现状、发展水平及关键挑战 | 系统性地总结了AI在宫颈癌病理诊断中的进展,特别指出深度学习模型可将诊断时间从8-15分钟缩短至1-3分钟,并达到92-98%的准确率 | 存在标准化问题、临床验证有限以及基础设施成本高昂等实施挑战 | 评估人工智能技术在宫颈癌病理诊断中的应用与挑战 | 涉及宫颈癌病理诊断的人工智能应用研究,包括组织病理学、免疫组织化学和分子病理学诊断 | 数字病理学 | 宫颈癌 | NA | CNN | 组织病理学图像 | 基于56项纳入研究,具体样本量未在摘要中明确 | NA | 卷积神经网络 | 诊断准确率 | NA |
| 1054 | 2026-02-08 |
Multimodal MRI radiomics-clinical fusion model predicts intravenous glucocorticoid response in thyroid eye disease
2025, Frontiers in endocrinology
IF:3.9Q2
DOI:10.3389/fendo.2025.1726947
PMID:41641033
|
研究论文 | 本研究开发了一种多模态MRI影像组学-临床融合模型,用于预测甲状腺眼病患者对静脉糖皮质激素治疗的反应 | 首次将多模态MRI影像组学特征与深度迁移学习特征融合,并结合临床预测因子构建综合模型,以预测甲状腺眼病的治疗反应 | 研究为回顾性、多中心设计,样本量相对较小(108名患者),且仅使用了两种MRI序列(T1WI和T2WI-FS) | 预测甲状腺眼病患者对静脉糖皮质激素治疗的反应,以实现个性化治疗规划 | 甲状腺眼病患者 | 数字病理学 | 甲状腺眼病 | MRI(T1加权成像和脂肪抑制T2加权成像) | 融合模型(影像组学与深度学习) | 医学影像(MRI) | 108名甲状腺眼病患者(78名应答者,30名无应答者) | NA | NA | AUC, 校准曲线, 决策曲线分析 | NA |
| 1055 | 2026-02-08 |
CervSpineNet: a hybrid deep learning-based approach for the segmentation of cervical spinous processes
2025, Frontiers in bioengineering and biotechnology
IF:4.3Q2
DOI:10.3389/fbioe.2025.1733689
PMID:41635798
|
研究论文 | 本文提出了一种名为CervSpineNet的混合深度学习框架,用于自动分割颈椎棘突,并基于专家标注的500张颈椎X光片数据集进行验证 | 结合基于Transformer的编码器捕获全局解剖上下文与轻量级卷积解码器细化局部边界,并采用复合损失函数联合优化区域重叠、类别平衡、结构保真度和边界准确性 | 未提及模型在外部数据集或不同设备采集图像上的泛化性能 | 开发自动化工具以可靠分割颈椎棘突,支持解剖标志定位、手术规划和脊柱畸形纵向评估 | 颈椎棘突 | 计算机视觉 | 脊柱畸形 | X射线成像 | 混合深度学习框架 | 图像 | 500张颈椎脊柱X光片 | 未明确提及 | Transformer编码器与卷积解码器混合架构 | Dice系数, IoU, SSIM, HD95距离, MAE | 标准临床硬件 |
| 1056 | 2026-02-08 |
Deep learning classification of pediatric spinal radiographs for use in large scale imaging registries
2024-11, Spine deformity
IF:1.6Q3
DOI:10.1007/s43390-024-00933-9
PMID:39039392
|
研究论文 | 本研究开发并应用了一种深度学习算法,用于自动分类小儿脊柱侧弯患者的脊柱X光片 | 首次将EfficientNet B6架构应用于小儿脊柱侧弯X光片的自动分类,实现了高精度分类,为大规模影像注册库的数据自动录入提供了重要工具 | 在数据集中图像数量少于100的类别上观察到性能较低,可能影响模型在罕见类别上的泛化能力 | 开发自动分类小儿脊柱侧弯患者脊柱X光片的算法,以支持大规模影像注册库的数据管理 | 小儿脊柱侧弯患者的脊柱X光片(前后位和侧位) | 计算机视觉 | 脊柱侧弯 | X光成像 | CNN | 图像 | 7777张前后位图像和5621张侧位图像,总计13398张X光片 | NA | EfficientNet B6 | 准确率, 精确率, 召回率, F1分数 | NA |
| 1057 | 2026-02-08 |
Characterisation of the normal human ganglion cell-inner plexiform layer using widefield optical coherence tomography
2024-Mar, Ophthalmic & physiological optics : the journal of the British College of Ophthalmic Opticians (Optometrists)
DOI:10.1111/opo.13255
PMID:37990841
|
研究论文 | 本研究利用宽场光学相干断层扫描技术,描述了健康人群中神经节细胞-内丛状层厚度的变化特征 | 首次在健康人群中使用宽场光学相干断层扫描技术,结合深度学习自动分割方法,系统分析了神经节细胞-内丛状层厚度随年龄、眼轴长度和性别的变化模式,并揭示了其空间分布特征 | 研究仅基于470只健康眼睛的数据,样本量相对有限,且未考虑种族、遗传等其他潜在影响因素 | 描述健康人群中神经节细胞-内丛状层厚度的正常变异,并探讨其与年龄、眼轴长度和性别的关系 | 健康人群的眼睛(470只健康眼睛) | 数字病理学 | NA | 宽场光学相干断层扫描 | 深度学习 | 图像 | 470只健康眼睛 | NA | NA | NA | NA |
| 1058 | 2026-02-08 |
PolyAMiner-Bulk is a deep learning-based algorithm that decodes alternative polyadenylation dynamics from bulk RNA-seq data
2024-Feb-26, Cell reports methods
IF:4.3Q2
DOI:10.1016/j.crmeth.2024.100707
PMID:38325383
|
研究论文 | 本文介绍了一种基于深度学习的算法PolyAMiner-Bulk,用于从批量RNA-seq数据中解码选择性多聚腺苷酸化动态 | 该算法使用注意力机制准确重建C/PAS序列语法,解决重叠C/PAS问题,捕捉非近端至远端APA变化,并生成可视化结果,相比现有方法能更准确地识别APA变化 | NA | 开发一种能够从批量RNA-seq数据中准确解码选择性多聚腺苷酸化动态的算法 | 选择性多聚腺苷酸化动态及其在人类疾病中的调控 | 自然语言处理 | NA | RNA-seq | 深度学习 | RNA-seq数据 | NA | NA | 注意力机制 | NA | NA |
| 1059 | 2026-02-08 |
IDSL_MINT: a deep learning framework to predict molecular fingerprints from mass spectra
2024-Jan-18, Journal of cheminformatics
IF:7.1Q1
DOI:10.1186/s13321-024-00804-5
PMID:38238779
|
研究论文 | 本文介绍了一种名为IDSL_MINT的深度学习框架,用于从质谱数据预测分子指纹 | IDSL_MINT首次将Transformer模型应用于质谱数据,类似于大型语言模型,能够将MS/MS谱图转化为分子指纹描述符 | NA | 提高非靶向代谢组学和暴露组学研究中MS/MS谱图的注释率 | 质谱数据(MS/MS谱图) | 机器学习 | NA | 串联质谱(MS/MS) | Transformer | 质谱数据 | 使用LipidMaps数据库进行基准测试 | NA | Transformer | NA | NA |
| 1060 | 2026-02-08 |
TVnet: Automated Time-Resolved Tracking of the Tricuspid Valve Plane in MRI Long-Axis Cine Images with a Dual-Stage Deep Learning Pipeline
2021 Sep-Oct, Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention
DOI:10.1007/978-3-030-87231-1_55
PMID:41641013
|
研究论文 | 本研究提出了一种名为TVnet的双阶段深度学习管道,用于在MRI长轴电影图像中自动追踪三尖瓣平面,以评估右心室功能障碍 | 提出了一种基于ResNet-50和自动图像线性变换的双阶段深度学习管道,首次实现了三尖瓣平面的自动时间分辨追踪,显著提高了标注准确性 | 模型仅在140名患者的数据上进行训练和评估,样本量相对有限,且未提及在外部验证集上的性能 | 开发一种自动化方法,用于在MRI长轴电影图像中追踪三尖瓣平面,以辅助评估右心室功能障碍 | 来自140名患有多种心血管疾病患者的MRI长轴电影图像 | 计算机视觉 | 心血管疾病 | MRI | CNN | 图像 | 140名患者的4170张图像 | NA | ResNet-50 | 欧几里得距离误差, ICC | NA |