深度学习在生物医药领域中的应用

本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!

如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!

Sample Image
添加微信请说明来意
Sample Image
微信赞赏

除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。

当前筛选条件: [分区不过滤] [IF不过滤] [发表日期不过滤] [清除筛选条件]
当前共找到 25067 篇文献,本页显示第 10581 - 10600 篇。
序号 推送日期 文章 类型 简述 创新点 不足 研究目的 研究对象 领域 病种 技术 模型 数据类型 样本量
10581 2024-12-23
Enhancing classification of active and non-active lesions in multiple sclerosis: machine learning models and feature selection techniques
2024-Dec-20, BMC medical imaging IF:2.9Q2
研究论文 本研究探讨了机器学习和深度学习模型在多发性硬化症(MS)活动性和非活动性病变分类中的表现 本研究首次评估了多种机器学习模型和一种顺序深度学习模型在MS病变分类中的性能,并展示了顺序深度学习方法和集成方法在实现稳健预测性能方面的有效性 本研究的局限性在于仅使用了T2加权MRI图像进行分析,未涵盖其他类型的影像数据 评估机器学习和深度学习模型在多发性硬化症活动性和非活动性病变分类中的性能 多发性硬化症的活动性和非活动性病变 机器学习 多发性硬化症 机器学习模型和特征选择技术 顺序深度学习模型和混合梯度提升分类器(HGBC) 图像 75个活动性病变和100个非活动性病变
10582 2024-12-23
Adaptive fusion of dual-view for grading prostate cancer
2024-Dec-17, Computerized medical imaging and graphics : the official journal of the Computerized Medical Imaging Society IF:5.4Q1
研究论文 本文提出了一种深度学习方法,通过自适应融合双视角MRI图像来实现前列腺癌的准确分级 设计了一种双视角自适应融合模型,通过动态调整融合权重来充分利用互补信息,并基于不确定性估计自适应加权预测结果 未提及具体实验数据集的样本量和多样性,可能影响模型的泛化能力 开发一种非侵入性且高效的前列腺癌分级方法,以辅助临床诊断 前列腺癌的分级诊断 计算机视觉 前列腺癌 多参数磁共振成像(MRI) 自适应融合模型 图像 NA
10583 2024-12-23
Guidelines for cerebrovascular segmentation: Managing imperfect annotations in the context of semi-supervised learning
2024-Dec-11, Computerized medical imaging and graphics : the official journal of the Computerized Medical Imaging Society IF:5.4Q1
研究论文 本文研究了在半监督学习背景下,针对脑血管理分割任务中不完美标注的数据依赖性,并比较了多种最先进的半监督方法 提出了在半监督学习框架下处理不完美标注的指南,并评估了不同数据量和质量场景下的性能 未提及具体限制 提供脑血管理分割模型的标注和训练指南 脑血管理分割任务中的标注一致性和模型性能 计算机视觉 NA 半监督学习 NA 图像 未提及具体样本数量
10584 2024-12-23
Crucial rhythms and subnetworks for emotion processing extracted by an interpretable deep learning framework from EEG networks
2024-Dec-03, Cerebral cortex (New York, N.Y. : 1991)
研究论文 本文提出了一种结合注意力机制和领域对抗策略的深度学习框架,用于从脑电图网络中提取可解释的情感处理特征 本文创新性地结合了注意力机制和领域对抗策略,增强了情感识别的关键节律和子网络的贡献,并提高了跨受试者任务的泛化性能 本文未详细讨论该方法在其他数据集或不同情感识别任务中的适用性 研究目的是从脑电图网络中提取可解释的结构特征,用于情感识别任务 研究对象是脑电图网络中的情感处理特征 机器学习 NA 脑电图 深度学习模型 脑电图数据 使用了SJTU Emotion EEG Dataset (SEED)和实验室记录的脑电图数据
10585 2024-12-23
Machine Learning Streamlines the Morphometric Characterization and Multiclass Segmentation of Nuclei in Different Follicular Thyroid Lesions: Everything in a NUTSHELL
2024-Dec, Modern pathology : an official journal of the United States and Canadian Academy of Pathology, Inc IF:7.1Q1
研究论文 本文研究了甲状腺结节病变中核形态特征的识别和多类分割,开发了一种名为NUTSHELL的深度学习模型,用于辅助诊断 提出了NUTSHELL模型,能够成功检测和分类甲状腺肿瘤中的大多数核,并提供了NIFTP区域的即时概览,有助于检测PTC的微小病灶或识别淋巴结转移 仅分析了少量NIFTP病例的二代测序数据,未全面探讨RAS相关突变对核形态的影响 识别NIFTP和PTC的可解释核形态特征,并开发深度学习模型以减少诊断变异性 NIFTP、PTC和增生性结节(HP)的核形态特征 数字病理学 甲状腺癌 深度学习 深度学习模型 图像 NIFTP、PTC和HP病例的全切片图像
10586 2024-12-23
A review of deep learning models for the prediction of chromatin interactions with DNA and epigenomic profiles
2024-Nov-22, Briefings in bioinformatics IF:6.8Q1
综述 本文综述了利用深度学习模型预测染色质相互作用矩阵的最新进展 深度学习通过其强大的特征提取和模式识别能力,为整合多组学数据构建准确的染色质相互作用预测模型提供了新方法 染色质相互作用机制仍未被充分探索,预测染色质相互作用矩阵仍面临挑战 系统总结染色质相互作用矩阵预测模型的最新进展,探讨其在生物系统中的应用 染色质相互作用矩阵的预测模型及其在基因表达调控中的应用 机器学习 NA 深度学习 深度学习模型(如CNN、LSTM等) DNA序列和表观遗传信号 NA
10587 2024-12-23
scRGCL: a cell type annotation method for single-cell RNA-seq data using residual graph convolutional neural network with contrastive learning
2024-Nov-22, Briefings in bioinformatics IF:6.8Q1
研究论文 提出了一种基于残差图卷积神经网络和对比学习的单细胞RNA测序数据细胞类型注释方法scRGCL scRGCL通过残差图卷积神经网络提取复杂的高阶特征,利用对比学习学习有意义的细胞间差异特征,并通过权重冻结避免过拟合 现有方法未能充分利用细胞间差异特征,缺乏灵活性以整合高阶特征,且低维基因特征可能导致神经网络过拟合 开发一种新的深度学习模型,用于单细胞RNA测序数据的细胞类型注释 单细胞RNA测序数据的细胞类型注释 机器学习 NA 单细胞RNA测序 残差图卷积神经网络 基因表达数据 8个单细胞基准数据集,包括7个人类数据集和1个小鼠数据集
10588 2024-12-23
Concurrent optogenetic motor mapping of multiple limbs in awake mice reveals cortical organization of coordinated movements
2024 Nov-Dec, Brain stimulation IF:7.6Q1
研究论文 本文开发了一种多肢光遗传学运动映射技术,用于在清醒小鼠中同时映射多个肢体的运动表示,并探讨了皮质对协调运动的组织结构 首次在清醒小鼠中使用光遗传学技术同时映射多个肢体的运动表示,揭示了皮质对协调和行为相关运动输出的地形组织 NA 开发一种新的光遗传学技术,用于研究清醒小鼠中多个肢体的协调运动在皮质中的组织结构 清醒小鼠的多个肢体运动表示及其在皮质中的组织结构 神经科学 NA 光遗传学刺激 深度学习模型 运动数据 多只小鼠
10589 2024-12-22
Explainable Deep Learning Approaches for Risk Screening of Periodontitis
2025-Jan, Journal of dental research IF:5.7Q1
研究论文 本研究利用可解释的人工智能(XAI)技术,通过分析多种临床特征,为牙周炎的早期筛查提供个性化风险评估 本研究首次将可解释的人工智能技术应用于牙周炎的早期筛查,并通过LIME方法评估了潜在的相关因素,揭示了与牙周炎相关的重要特征 本研究的样本主要来自NHANES数据库,可能存在样本代表性不足的问题 开发一种基于可解释人工智能技术的牙周炎早期筛查工具 牙周炎的早期筛查及相关风险因素 机器学习 牙周疾病 可解释的人工智能(XAI) 深度学习模型 临床数据 30,465名参与者,其中9,632名用于所有年龄组,5,601名用于50岁以上年龄组
10590 2024-12-22
Survival analysis of clear cell renal cell carcinoma based on radiomics and deep learning features from CT images
2024-Dec-20, Medicine IF:1.3Q2
研究论文 本文基于CT图像的放射组学和深度学习特征,创建了一个用于预测透明细胞肾细胞癌患者预后的列线图 本文提出了一个结合放射组学和深度学习特征的融合签名,并将其与临床病理风险因素结合,构建了一个新的列线图,相比传统的临床列线图,其C-index值提高了约20% 本文未详细说明深度学习模型的具体架构和训练过程,且样本量相对较小 开发一个基于CT图像的非侵入性模型,用于透明细胞肾细胞癌患者的生存预后预测 透明细胞肾细胞癌患者的CT图像和临床病理数据 数字病理学 肾癌 放射组学,深度学习 Cox比例风险回归模型 图像 822名透明细胞肾细胞癌患者
10591 2024-12-22
HeatGSNs: Integrating Eigenfilters and Low-Pass Graph Heat Kernels into Graph Spectral Convolutional Networks for Brain Tumor Segmentation and Classification
2024-Dec-20, Biomedical physics & engineering express IF:1.3Q3
研究论文 本文提出了一种名为HeatGSNs的新型图谱卷积网络,结合特征滤波器和可学习的低通图热核,用于脑肿瘤的分割和分类 HeatGSNs通过引入特征滤波器和可学习的低通图热核,解决了图网络中的过平滑和振荡收敛问题,实现了快速且准确的性能 NA 解决脑肿瘤MRI数据集中的类别不平衡问题,并提高脑肿瘤分割和分类的准确性 脑肿瘤的分割和分类 计算机视觉 脑肿瘤 图谱卷积网络 图谱卷积网络 图像 BRATS2021数据集
10592 2024-12-22
A Variational Network for Biomedical Images Denoising using Bayesian model and Auto-Encoder
2024-Dec-20, Biomedical physics & engineering express IF:1.3Q3
研究论文 本文提出了一种基于贝叶斯模型和变分自编码器的医学图像去噪方法 该方法结合了贝叶斯建模和变分网络,能够更好地泛化到新的噪声分布,并在去噪准确性、视觉质量和计算效率上优于现有方法 NA 开发一种新的医学图像去噪方法,以提高图像分析的准确性和可靠性 医学图像的去噪 计算机视觉 NA 贝叶斯模型、变分网络 变分自编码器 图像 使用了CT扫描医学图像数据集
10593 2024-12-22
Zero-shot counting with a dual-stream neural network model
2024-Dec-18, Neuron IF:14.7Q1
研究论文 本文构建了一个基于灵长类大脑双流架构的深度学习模型,能够在零样本情况下对不熟悉的物体进行计数 提出了一个基于灵长类大脑双流架构的深度学习模型,能够在零样本情况下对不熟悉的物体进行计数,并成功预测人类计数行为 NA 研究视觉场景理解中物体识别和关系结构的编码方式 灵长类大脑的双流处理机制以及视觉场景中的物体计数 计算机视觉 NA 深度学习 双流神经网络 图像 NA
10594 2024-12-22
Detection of Viable but Nonculturable E. coli Induced by Low-Level Antimicrobials Using AI-Enabled Hyperspectral Microscopy
2024-Dec-09, Journal of food protection IF:2.1Q3
研究论文 本研究开发了一种基于人工智能的超光谱显微镜成像框架,用于在低水平抗菌剂下快速检测处于可存活但不可培养状态的大肠杆菌 本研究首次使用AI驱动的超光谱显微镜技术,结合EfficientNetV2卷积神经网络架构,实现了对可存活但不可培养状态的大肠杆菌的高精度自动分类 本研究的样本量较小,仅使用了200个样本进行模型训练和验证,未来需要更大规模的样本验证 开发一种快速、自动化的方法来检测处于可存活但不可培养状态的大肠杆菌,以提高食品安全和公共卫生 处于可存活但不可培养状态的大肠杆菌K-12 计算机视觉 NA 超光谱显微镜成像 EfficientNetV2 图像 200个样本
10595 2024-12-06
Deep learning training dynamics analysis for single-cell data
2024-Dec, Nature computational science IF:12.0Q1
NA NA NA NA NA NA NA NA NA NA NA NA
10596 2024-12-22
Automated Identification of Breast Cancer Relapse in Computed Tomography Reports Using Natural Language Processing
2024-Dec, JCO clinical cancer informatics IF:3.3Q2
研究论文 本文研究了使用自然语言处理(NLP)技术,结合先进的深度学习变压器工具和大型语言模型,自动识别计算机断层扫描(CT)报告中乳腺癌复发的情况 本文创新性地使用了NLP技术,结合深度学习变压器工具和大型语言模型,自动化识别CT报告中乳腺癌的复发情况 本文的局限性在于模型的敏感性和特异性在不同类型的复发中表现不一致,尤其是局部复发的模型敏感性较低 研究目的是开发NLP模型,自动识别CT报告中乳腺癌的局部、区域性和远处复发情况,以增强患者预后数据收集 研究对象是2005年1月1日至2014年12月31日期间确诊为乳腺癌患者的随访CT报告 自然语言处理 乳腺癌 自然语言处理(NLP) 深度学习变压器模型 文本 1445份CT报告
10597 2024-12-22
Toward molecular diagnosis of major depressive disorder by plasma peptides using a deep learning approach
2024-Nov-22, Briefings in bioinformatics IF:6.8Q1
研究论文 本文开发了一种深度学习方法,通过血浆肽的质谱特征来区分重度抑郁症患者和健康对照者 首次使用深度学习方法从血浆肽中发现可用于区分重度抑郁症患者和健康对照者的质谱特征 NA 探索重度抑郁症的分子诊断方法 重度抑郁症患者和健康对照者的血浆肽 机器学习 精神疾病 质谱分析 神经网络(CMS-Net) 肽序列 NA
10598 2024-12-22
Correction to: Toward molecular diagnosis of major depressive disorder by plasma peptides using a deep learning approach
2024-Nov-22, Briefings in bioinformatics IF:6.8Q1
NA NA NA NA NA NA NA NA NA NA NA NA
10599 2024-12-22
Three-dimensional deep learning model complements existing models for preoperative disease-free survival prediction in localized clear cell renal cell carcinoma: a multicenter retrospective cohort study
2024-Nov-01, International journal of surgery (London, England)
研究论文 本研究开发并验证了一种基于CT图像的三维深度学习模型,用于预测局部透明细胞肾细胞癌的术前无病生存期 本研究首次提出了一种基于CT图像的三维深度学习模型,用于预测局部透明细胞肾细胞癌的术前无病生存期,并展示了其优于现有模型的预测性能 本研究为回顾性多中心队列研究,未来需要进一步的前瞻性研究来验证模型的临床应用价值 开发并验证一种新的术前无病生存期预测模型,以提高局部透明细胞肾细胞癌患者的预后预测准确性 局部透明细胞肾细胞癌患者的术前无病生存期预测 机器学习 肾癌 深度学习 ResNet 50 图像 707名局部透明细胞肾细胞癌患者
10600 2024-12-22
Comprehensive deep learning-based assessment of living liver donor CT angiography: from vascular segmentation to volumetric analysis
2024-Oct-01, International journal of surgery (London, England)
研究论文 本研究使用深度学习模型对活体肝移植供体的CT血管造影数据进行分析,从血管分割到体积分析 本研究开发了一种基于深度学习的3D残差U-Net模型,用于肝体积计算和血管分割,相比传统手动分割方法,提供了更一致和高效的体积评估 需要进一步验证该模型在不同临床环境和成像协议中的通用性 提高活体肝移植术前规划的准确性和效率 活体肝移植供体的肝血管和体积 计算机视觉 NA 深度学习 3D残差U-Net 图像 2022年4月至2023年2月期间三星医疗中心的活体肝移植供体CT血管造影数据
回到顶部