本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!
除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1061 | 2025-06-13 |
AI-driven prediction of bitterness and sweetness and analysis of receptor interactions
2025, Current research in food science
IF:6.2Q1
DOI:10.1016/j.crfs.2025.101090
PMID:40497229
|
研究论文 | 本研究开发了基于图神经网络(GNN)的人工智能模型,用于根据化学结构预测苦味和甜味,并通过分子对接模拟验证了预测结果 | 使用GNN直接从分子结构中学习,减少特征选择偏差,并通过Integrated Gradients方法增强模型的可解释性 | 需要进一步研究以探索更深入的分子机制,并将该方法扩展到预测其他味觉模式 | 理解甜味和苦味的分子机制,识别天然和合成化合物中的理想味觉特征 | 被分类为苦味或甜味的化合物 | 机器学习 | NA | 图神经网络(GNN)、分子对接模拟 | GNN | 化学结构数据 | NA |
1062 | 2025-06-13 |
Artificial intelligence-guided design of lipid nanoparticles for pulmonary gene therapy
2024-Dec-10, Nature biotechnology
IF:33.1Q1
DOI:10.1038/s41587-024-02490-y
PMID:39658727
|
研究论文 | 该论文介绍了一种基于深度学习的策略,用于设计可电离脂质以优化脂质纳米颗粒在肺基因治疗中的应用 | 提出了一种名为“基于神经网络的脂质优化”的深度学习方法,用于预测核酸递送效果,并成功识别出两种新型脂质结构FO-32和FO-35,在肺基因治疗中表现出色 | 研究仅在小鼠和雪貂模型中进行了验证,尚未在人类临床试验中测试 | 优化脂质纳米颗粒的设计,以提高mRNA在肺部的递送效率 | 可电离脂质及其在脂质纳米颗粒中的应用 | 机器学习 | NA | 深度学习方法(定向消息传递神经网络) | 定向消息传递神经网络 | 脂质纳米颗粒活性测量数据 | 超过9,000个脂质纳米颗粒活性测量数据,评估了160万种脂质结构 |
1063 | 2025-06-13 |
Cardiovascular care with digital twin technology in the era of generative artificial intelligence
2024-Dec-01, European heart journal
IF:37.6Q1
DOI:10.1093/eurheartj/ehae619
PMID:39322420
|
综述 | 本文综述了数字孪生技术在心血管医学中的应用及其未来潜力,特别是在生成式人工智能的推动下 | 探讨了数字孪生技术与生成式人工智能的结合,为心血管医学带来的动态和全面的个性化模拟 | 讨论了将数字孪生技术整合到个性化心血管护理中的个体和社会挑战及伦理考虑 | 总结数字孪生在心血管医学中的应用及其未来潜力 | 心血管医学中的数字孪生技术 | 数字病理学 | 心血管疾病 | 生成式人工智能 | 机器学习与生成模型 | 多模态数据 | NA |
1064 | 2025-06-13 |
An adaptive weight ensemble approach to forecast influenza activity in an irregular seasonality context
2024-10-04, Nature communications
IF:14.7Q1
DOI:10.1038/s41467-024-52504-1
PMID:39366942
|
research paper | 开发了一种自适应权重集成方法,用于预测季节性不规律的流感活动 | 提出了自适应权重混合集成模型(AWBE),动态更新模型贡献,显著提高了预测准确性 | 研究主要基于香港地区的数据,可能在其他地区的适用性有限 | 预测季节性不规律的流感活动 | 香港地区的流感活动 | machine learning | influenza | 统计方法、机器学习和深度学习方法 | 自适应权重混合集成模型(AWBE) | 时间序列数据 | 32次流行病数据(1998-2019年)及COVID后数据(2023-2024年) |
1065 | 2025-06-13 |
Active Learning Pipeline to Identify Candidate Terms for a CDSS Ontology
2024-Aug-22, Studies in health technology and informatics
DOI:10.3233/SHTI240660
PMID:39176629
|
research paper | 本文探讨了一种主动学习方法,用于从出版物中自动识别候选术语,以支持临床决策支持系统(CDSS)本体的构建 | 采用主动学习方法自动识别候选术语,并结合人工验证作为深度学习模型训练的一部分 | 初步结果展示,尚未进行大规模验证和应用 | 探索自动化方法以辅助构建和维护生物医学领域的本体 | 出版物中的候选术语 | natural language processing | NA | active learning, deep learning | NA | text | NA |
1066 | 2025-06-13 |
[Automatic segmentation of dental cone-beam computed tomography scans using a deep learning framework]
2024-08-11, Orvosi hetilap
IF:0.8Q3
DOI:10.1556/650.2024.33098
PMID:39127997
|
研究论文 | 本文提出了一种基于深度学习的自动分割方法,用于牙科锥形束计算机断层扫描(CBCT)图像的三维重建 | 使用基于SegResNet架构的深度学习模型在MONAI框架内开发,实现了与半自动分割相当的准确度 | 研究样本量较小,仅包含70名部分无牙患者的CBCT图像 | 开发并评估一种用于牙科CBCT图像自动分割的深度学习模型 | 牙科CBCT图像 | 数字病理 | 牙科疾病 | 深度学习 | SegResNet | 图像 | 70名部分无牙患者的CBCT图像 |
1067 | 2025-06-13 |
One hundred years of neurosciences in the arts and humanities, a bibliometric review
2023-11-09, Philosophy, ethics, and humanities in medicine : PEHM
DOI:10.1186/s13010-023-00147-3
PMID:37946225
|
综述 | 本文通过文献计量学方法分析了近一百年来神经科学与艺术和人文学科的交叉研究趋势 | 首次通过纵向文献计量分析揭示了神经科学对艺术与人文学科主题方向的重大影响 | 研究仅基于Scopus数据库的文献数据,可能未涵盖所有相关研究 | 探究神经科学技术在创造力与审美体验交叉领域的历史证据 | 1922-2022年间3612篇跨学科研究文献 | 神经科学与艺术人文交叉领域 | NA | 文献计量分析、PRISMA筛选方法、算法聚类 | 机器学习与深度学习模型 | 文献元数据 | 3612篇文献 |
1068 | 2025-06-13 |
Combined genome-wide association study of 136 quantitative ear morphology traits in multiple populations reveal 8 novel loci
2023-07, PLoS genetics
IF:4.0Q1
DOI:10.1371/journal.pgen.1010786
PMID:37459304
|
研究论文 | 通过多人群的136个耳形态定量性状的全基因组关联研究,揭示了8个新的遗传位点 | 发现了8个与人类耳特征相关的新遗传位点,并揭示了耳形态与其他表面外胚层衍生性状的共享遗传决定因素 | 研究主要基于欧洲、亚洲和拉丁美洲的五个队列,可能无法完全代表全球人群的遗传多样性 | 探索人类耳形态的遗传结构及其与其他表面外胚层衍生性状的遗传关系 | 14,921名来自欧洲、亚洲和拉丁美洲的个体 | 基因组学 | NA | GWAS meta-analysis, C-GWASs, 深度学习 | NA | 数字面部图像 | 14,921名个体 |
1069 | 2025-06-12 |
Artificial intelligence (AI)-driven morphological assessment of zebrafish larvae for developmental toxicity chemical screening
2025-Aug, Aquatic toxicology (Amsterdam, Netherlands)
DOI:10.1016/j.aquatox.2025.107415
PMID:40450914
|
研究论文 | 利用深度学习模型对斑马鱼幼虫进行形态学评估,以支持发育毒性化学物质筛选 | 开发了基于多视角卷积神经网络(MVCNN)的分类和分割模型,用于自动评估斑马鱼幼虫的形态变化,提高了评估的客观性和效率 | 模型性能在某些特定形态变化分类上仍有提升空间(F1分数低于0.70) | 为毒理学评估中斑马鱼的常规使用提供科学依据,开发自动化评估工具 | 暴露于各种化学物质5天的斑马鱼胚胎 | 计算机视觉 | NA | 深度学习 | MVCNN(多视角卷积神经网络) | 图像 | SEAZIT项目收集的斑马鱼胚胎图像数据(具体数量未说明) |
1070 | 2025-06-12 |
Scale-equivariant deep model-based optoacoustic image reconstruction
2025-Aug, Photoacoustics
IF:7.1Q1
DOI:10.1016/j.pacs.2025.100727
PMID:40487237
|
research paper | 本文提出了一种尺度等变的基于模型的深度学习方法,用于多光谱光声断层扫描的图像重建 | 提出了一种尺度等变的基于模型的重建算子,能够根据输入正弦图的范数自动调整正则化强度,并促进了使用固定范数输入正弦图的监督深度学习 | 未提及具体的数据集或实验规模限制 | 优化多光谱光声断层扫描的图像重建质量 | 多光谱光声断层扫描的图像重建 | digital pathology | NA | 多光谱光声断层扫描 | scale-equivariant model-based reconstruction operator | image | NA |
1071 | 2025-06-12 |
Virtual lung screening trial (VLST): An in silico study inspired by the national lung screening trial for lung cancer detection
2025-Jul, Medical image analysis
IF:10.7Q1
DOI:10.1016/j.media.2025.103576
PMID:40209556
|
研究论文 | 本文介绍了一项名为虚拟肺部筛查试验(VLST)的计算机模拟研究,旨在通过模拟临床试验的关键元素来加速临床研究并减少参与者风险 | 利用虚拟成像试验(VITs)模拟临床试验,特别是国家肺部筛查试验(NLST),以无风险的方式评估CT和CXR在肺癌筛查中的诊断性能 | 研究基于模拟数据,可能无法完全反映真实临床环境的复杂性 | 探索虚拟成像试验平台在模拟和加速临床试验中的潜力,特别是在肺癌筛查领域 | 模拟的肺癌结节和由XCAT人体模型生成的294名虚拟患者 | 数字病理学 | 肺癌 | CT和CXR成像 | 深度学习模型(AI CT-Reader和AI CXR-Reader) | 图像 | 294名虚拟患者 |
1072 | 2025-06-12 |
Meta-analysis of AI-based pulmonary embolism detection: How reliable are deep learning models?
2025-Jul, Computers in biology and medicine
IF:7.0Q1
DOI:10.1016/j.compbiomed.2025.110402
PMID:40412084
|
meta-analysis | 该论文通过荟萃分析评估了基于深度学习的肺栓塞检测模型的性能,并比较了CNN和U-Net架构的诊断效果 | 首次通过荟萃分析比较了CNN和U-Net在肺栓塞检测中的性能差异,并提供了两种架构的互补优势证据 | 研究间存在高度异质性(I2≈97%),且假设了50%的肺栓塞患病率可能影响结果准确性 | 评估深度学习算法在CT肺动脉造影中检测肺栓塞的诊断效能 | 深度学习模型(特别是CNN和U-Net架构)在肺栓塞检测中的应用 | digital pathology | pulmonary embolism | CTPA | CNN, U-Net | medical imaging | 24项研究(共22,984名患者) |
1073 | 2025-06-12 |
Artificial intelligence in resuscitation: a scoping review
2025-Jul, Resuscitation plus
IF:2.1Q2
DOI:10.1016/j.resplu.2025.100973
PMID:40486106
|
综述 | 本文通过范围综述方法,探讨了人工智能在心脏骤停复苏领域的应用现状和研究缺口 | 首次系统性梳理了AI在复苏领域的应用范围和方法学特征,并识别出关键研究缺口 | 纳入研究多为回顾性分析(90%),仅含2项随机对照试验,外部验证和实际临床应用有限 | 绘制AI在心脏骤停和复苏领域应用的研究图谱并识别未来研究方向 | 人工智能在心脏骤停预测、心律分类和复苏后预后评估中的应用 | 医疗人工智能 | 心脏骤停 | 机器学习(50%)、深度学习、自然语言处理 | NA | 临床数据 | 197项符合纳入标准的研究(从4046篇文献中筛选) |
1074 | 2025-06-12 |
Intermuscular adipose tissue and lean muscle mass assessed with MRI in people with chronic back pain in Germany: a retrospective observational study
2025-Jul, The Lancet regional health. Europe
DOI:10.1016/j.lanepe.2025.101323
PMID:40487774
|
研究论文 | 本研究通过MRI评估了德国慢性背痛患者的肌肉间脂肪组织和瘦肌肉质量,并探讨了它们与慢性背痛的关联 | 首次在大规模人群中使用全身MRI数据量化肌肉间脂肪组织和瘦肌肉质量,并分析其与慢性背痛的关联 | 横断面研究设计无法确定因果关系 | 探讨肌肉组成与慢性背痛之间的关联 | 30,868名德国国家队列(NAKO)参与者 | 医学影像分析 | 慢性背痛 | 全身MRI扫描和深度学习模型 | 深度学习模型 | MRI图像数据 | 30,868名参与者(其中27,518人纳入最终分析) |
1075 | 2025-06-12 |
Association of Psychological Resilience With Decelerated Brain Aging in Cognitively Healthy World Trade Center Responders
2025-Jul, Biological psychiatry global open science
DOI:10.1016/j.bpsgos.2025.100489
PMID:40487784
|
研究论文 | 该研究探讨了心理韧性对世界贸易中心救援人员大脑衰老速度的影响 | 首次在认知健康的世界贸易中心救援人员中,将心理韧性与大脑衰老速度相关联,并发现高韧性个体大脑衰老较慢 | 样本量较小(N=97),且仅针对特定人群(WTC救援人员) | 研究心理韧性是否对大脑衰老速度具有保护作用 | 参与世界贸易中心救援工作的认知健康人员 | 神经科学 | 精神健康障碍 | 结构磁共振成像(MRI) | 深度学习算法(BrainStructureAges) | MRI图像数据 | 97名WTC救援人员(分为3组:PTSD组32人,高韧性组34人,低暴露对照组31人) |
1076 | 2025-06-12 |
Annotating the microbial dark matter with HiFi-NN
2025-Jun-20, iScience
IF:4.6Q1
DOI:10.1016/j.isci.2025.112480
PMID:40491481
|
research paper | 本文介绍了一种名为HiFi-NN的计算方法,用于更精确地注释蛋白质序列的酶功能 | HiFi-NN方法在酶委员会(EC)编号的第4级注释上比现有深度学习方法具有更高的精确度和召回率,并且能够在比BLASTp更低的序列相似性下正确识别EC编号 | NA | 提高蛋白质序列酶功能注释的准确性 | 蛋白质序列 | bioinformatics | NA | HiFi-NN (Hierarchically-Finetuned Nearest Neighbor search) | NN (Nearest Neighbor) | protein sequences | NA |
1077 | 2025-06-12 |
Atom Identification in Bilayer Moiré Materials with Gomb-Net
2025-Jun-11, Nano letters
IF:9.6Q1
DOI:10.1021/acs.nanolett.5c01460
PMID:40454431
|
research paper | 该文章提出了一种名为Gomb-Net的深度学习方法,用于识别双层扭曲异质结构中各层原子的位置和种类,从而解析莫尔图案 | 开发了Gomb-Net模型,能够识别双层扭曲异质结构中各层原子的位置和种类,解决了莫尔图案带来的复杂性 | NA | 开发一种方法以识别双层扭曲异质结构中各层原子的位置和种类 | 双层扭曲异质结构中的原子位置和种类 | machine learning | NA | scanning transmission electron microscopy | Gomb-Net | image | NA |
1078 | 2025-06-12 |
Implicit neural representation for medical image reconstruction
2025-Jun-11, Physics in medicine and biology
IF:3.3Q1
DOI:10.1088/1361-6560/addfa5
PMID:40456260
|
综述 | 本文全面回顾了基于隐式神经表示(INR)的医学图像重建技术,强调了其对领域的日益增长的影响 | INR通过将底层信号建模为空间坐标的函数,提供了灵活且连续的图像表示,能够比传统离散方法更有效地捕捉精细细节和复杂结构 | 需要讨论INR在医学图像重建中的优势和局限性,以及未来研究方向 | 探讨INR在医学图像重建中的应用及其潜力 | 医学图像重建技术 | 数字病理 | NA | 隐式神经表示(INR) | NA | 图像 | NA |
1079 | 2025-06-12 |
Predicting survival rates of critically ill septic patients with heart failure using interpretable machine learning models
2025-Jun-11, Technology and health care : official journal of the European Society for Engineering and Medicine
IF:1.4Q3
DOI:10.1177/09287329251346284
PMID:40495578
|
research paper | 开发了一个可解释的预测模型,用于预测患有心力衰竭的脓毒症危重患者的生存率 | 首次为心力衰竭合并脓毒症的危重患者开发了一个可解释的生存率预测模型,并采用了SHAP方法解释模型 | 研究依赖于MIMIC数据库的数据,可能存在数据偏差 | 预测心力衰竭合并脓毒症危重患者的28天生存率 | 心力衰竭合并脓毒症的危重患者 | machine learning | cardiovascular disease | Deep Learning Survival (DeepSurv), SHAP | DeepSurv | clinical data | 11,778名患者 |
1080 | 2025-06-12 |
Time-Gated Raman Spectroscopy Combined with Deep Learning for Rapid, Label-Free Histopathological Discrimination of Gastric Cancer
2025-Jun-11, Analytical chemistry
IF:6.7Q1
DOI:10.1021/acs.analchem.5c02321
PMID:40497384
|
研究论文 | 结合时间门控拉曼光谱与深度学习技术,实现胃癌组织的快速、无标记病理鉴别 | 首次将时间门控拉曼光谱技术与深度学习结合用于胃癌诊断,有效抑制自发荧光并提升拉曼信号质量 | 未提及样本来源多样性及模型在外部验证集上的表现 | 开发分子水平、数字化且智能化的实时胃癌诊断方法 | 胃癌组织样本 | 数字病理学 | 胃癌 | 时间门控拉曼光谱(TG-Raman) | CNN | 光谱数据 | NA |