深度学习在生物医药领域中的应用

本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!

如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!

Sample Image
添加微信请说明来意
Sample Image
微信赞赏

除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。

当前筛选条件: [分区不过滤] [IF不过滤] [发表日期不过滤] [清除筛选条件]
当前共找到 24517 篇文献,本页显示第 10781 - 10800 篇。
序号 推送日期 文章 类型 简述 创新点 不足 研究目的 研究对象 领域 病种 技术 模型 数据类型 样本量
10781 2024-12-14
A Cluster-Based Deep Learning Model Perceiving Series Correlation for Accurate Prediction of Phonon Spectrum
2024-Dec, Advanced science (Weinheim, Baden-Wurttemberg, Germany)
研究论文 本文开发了一种基于晶格动力学理论的机器学习模型CSGN,用于预测晶体材料的声子态密度谱 提出了基于簇的序列图网络(CSGN)模型,通过多原子簇表示和混合高斯过程与动态时间规整机制,实现了对复杂谱的准确预测 NA 开发一种能够感知序列相关性的深度学习模型,以准确预测声子谱 晶体材料的声子态密度谱 机器学习 NA 混合高斯过程,动态时间规整 簇基序列图网络(CSGN) 声子态密度谱 NA
10782 2024-12-14
Reconstructing Molecular Networks by Causal Diffusion Do-Calculus Analysis with Deep Learning
2024-Dec, Advanced science (Weinheim, Baden-Wurttemberg, Germany)
研究论文 本文提出了一种结合干预操作和扩散模型的深度学习方法,即因果扩散Do-Calculus(CDD)分析,用于推断分子间的因果网络 CDD方法通过干预操作从观测数据中提取因果关系,显著提高了因果网络推断的准确性和泛化能力 NA 阐明生物过程在网络层面的分子机制 基因/分子间的因果关系 机器学习 NA 深度学习 扩散模型 组学数据 使用了模拟数据和真实组学数据,并分析了来自UK Biobank数据库的不同人群的疾病与潜在因素的因果关系
10783 2024-12-14
Artificial intelligence as an auxiliary tool in pediatric otitis media diagnosis
2024-Dec, International journal of pediatric otorhinolaryngology IF:1.2Q3
研究论文 本文探讨了使用卷积神经网络和深度学习技术作为辅助工具,用于儿科中耳炎的诊断 开发了儿科中耳炎分类器,通过AI技术将诊断准确率提高到98%以上,远超人类医生的诊断准确率 未提及具体的局限性 促进AI技术在儿科中耳炎诊断中的应用,提高诊断准确率 儿科中耳炎的诊断 计算机视觉 儿科疾病 卷积神经网络 CNN 图像 大量急性中耳炎(AOM)、分泌性中耳炎(OME)和正常耳镜图像
10784 2024-12-14
Early multi-cancer detection through deep learning: An anomaly detection approach using Variational Autoencoder
2024-Dec, Journal of biomedical informatics IF:4.0Q2
研究论文 本文提出了一种基于变分自编码器(VAE)的深度学习模型,用于早期多癌症检测 创新点在于使用变分自编码器进行异常检测,能够早期检测多种癌症,而不局限于特定类型的癌症 本文未详细讨论模型的泛化能力以及在不同数据集上的表现 开发一种能够早期检测多种癌症的深度学习模型 多种癌症的早期检测 机器学习 NA 变分自编码器(VAE) 变分自编码器(VAE) 转录组数据 使用TCGA和GTEx数据集,训练了六种癌症的数据
10785 2024-12-14
A review of AutoML optimization techniques for medical image applications
2024-Dec, Computerized medical imaging and graphics : the official journal of the Computerized Medical Imaging Society IF:5.4Q1
综述 本文综述了用于医学图像应用的AutoML优化技术 本文系统地回顾了现有的AutoML方法,并对其进行了分类和详细分析 本文未提供具体的实验结果或数据,而是侧重于方法的综述和分类 探讨AutoML技术在医学图像分析中的应用及其优化策略 医学图像分析任务中的AutoML技术 计算机视觉 NA AutoML NA 图像 NA
10786 2024-12-14
How to identify patient perception of AI voice robots in the follow-up scenario? A multimodal identity perception method based on deep learning
2024-Dec, Journal of biomedical informatics IF:4.0Q2
研究论文 本研究构建了一个基于深度学习的多模态身份感知模型,用于识别患者对AI语音机器人的感知 提出了一个结合BERT、TextCNN、AST和LSTM的多模态深度学习模型,用于识别患者对AI语音机器人的感知 NA 识别患者对AI语音机器人的感知,以优化随访过程并提高患者合作度 患者对AI语音机器人的感知 机器学习 NA 深度学习 多模态模型(BERT、TextCNN、AST、LSTM) 音频和文本 2030个患者的响应音频记录和相应的文本数据
10787 2024-12-14
HyperMPNN-A general strategy to design thermostable proteins learned from hyperthermophiles
2024-Dec-01, bioRxiv : the preprint server for biology
研究论文 本文提出了一种基于超嗜热菌蛋白质结构数据的自监督学习方法HyperMPNN,用于设计高度耐热蛋白质 通过重新训练的HyperMPNN网络,成功恢复了超嗜热菌蛋白质的独特氨基酸组成,并将其应用于非超嗜热菌蛋白质的设计,显著提高了蛋白质的耐热性 NA 开发一种新的方法来设计高度耐热蛋白质 超嗜热菌蛋白质和非超嗜热菌蛋白质 NA NA 自监督学习 HyperMPNN 蛋白质结构 NA
10788 2024-12-14
Automated confidence estimation in deep learning auto-segmentation for brain organs at risk on MRI for radiotherapy
2024-Dec, Journal of applied clinical medical physics IF:2.0Q3
研究论文 本文提出了一种名为AutoConfidence(ACo)的新型AI驱动质量保证方法,用于在磁共振成像(MRI)上进行脑部危及器官的自动分割,以评估每个体素的分割置信度 创新点在于无需金标准分割即可在每个体素基础上估计分割置信度,从而实现自动分割的稳健和高效审查 研究仅在胶质瘤病例中进行了验证,且未提及在其他类型肿瘤或不同成像模式中的应用 开发一种无需金标准分割的自动分割质量保证方法,以提高放射治疗中自动分割的可靠性和效率 脑部危及器官的自动分割在MRI上的置信度评估 计算机视觉 脑肿瘤 深度学习 生成对抗网络(GAN) 图像 32例回顾性胶质瘤病例用于训练,9例用于测试
10789 2024-12-14
Deep learning based ultra-low dose fan-beam computed tomography image enhancement algorithm: Feasibility study in image quality for radiotherapy
2024-Dec, Journal of applied clinical medical physics IF:2.0Q3
研究论文 研究了基于深度学习的超低剂量kV-扇形束CT图像增强算法在腹部和盆腔肿瘤放疗中的临床应用可行性 提出了基于CycleGAN的图像增强模型,显著提高了超低剂量CT图像的质量,接近正常剂量CT图像 研究仅在腹部和盆腔肿瘤患者中进行,样本量相对较小,可能需要进一步验证在其他类型肿瘤中的适用性 评估深度学习增强的超低剂量CT图像在放疗中的临床应用可行性 腹部和盆腔肿瘤患者 计算机视觉 肿瘤 CycleGAN GAN 图像 76名腹部和盆腔肿瘤患者
10790 2024-12-14
Sleep apnea test prediction based on Electronic Health Records
2024-Dec, Journal of biomedical informatics IF:4.0Q2
研究论文 本研究开发了基于电子健康记录(EHR)的预测模型,用于预测50岁以后是否进行睡眠呼吸暂停测试 引入了RankLi方法进行时间变量选择,并探讨了根据EHR记录数量进行子群体建模的有效性 研究仅限于50岁以后的预测,且依赖于EHR记录的可用性 开发预测模型,提前通知潜在的保险成员是否需要进行睡眠呼吸暂停测试 基于电子健康记录的睡眠呼吸暂停测试预测 机器学习 睡眠呼吸暂停 NA 1-CNN, LSTM, 随机森林, 逻辑回归 电子健康记录 NA
10791 2024-12-14
Commentator Discussion: Deep learning-based prediction of nodal metastasis in lung cancer using endobronchial ultrasound
2024-Dec, JTCVS techniques IF:1.7Q2
NA NA NA NA NA NA NA NA NA NA NA NA
10792 2024-12-14
Inferring Taxonomic Affinities and Genetic Distances Using Morphological Features Extracted from Specimen Images: A Case Study with a Bivalve Data Set
2024-Nov-29, Systematic biology IF:6.1Q1
研究论文 本文探讨了使用深度学习方法从标本图像中提取形态特征,以推断分类亲缘关系和遗传距离的可行性 本文首次将深度学习方法应用于从标本图像中推断分类亲缘关系和遗传距离,并展示了其在高分类层级上的有效性 基于视觉相似性和遗传距离的细粒度重建(如姐妹分类群关系)仍需进一步研究 探索从标本图像中推断分类亲缘关系和遗传距离的深度学习方法 4144种双壳类物种的标本图像 计算机视觉 NA 深度学习 监督分类模型和无监督相似性学习模型 图像 4144种双壳类物种,涵盖74个科,跨越现存双壳纲的所有目和亚纲
10793 2024-12-14
UPicker: a semi-supervised particle picking transformer method for cryo-EM micrographs
2024-Nov-22, Briefings in bioinformatics IF:6.8Q1
研究论文 本文提出了一种名为UPicker的半监督变压器方法,用于冷冻电镜显微图像中的自动单粒子挑选 UPicker通过无监督预训练和监督微调的两阶段训练过程,减少了对手动标注数据的依赖,并采用对比去噪训练策略和混合数据增强策略来提高模型性能 NA 解决冷冻电镜结构重建中自动单粒子挑选的挑战 冷冻电镜显微图像中的单粒子 计算机视觉 NA 深度学习 变压器(Transformer) 图像 模拟数据集和实验数据集
10794 2024-12-14
A continuous pursuit dataset for online deep learning-based EEG brain-computer interface
2024-Nov-20, Scientific data IF:5.8Q1
研究论文 本文介绍了一个用于在线深度学习脑机接口研究的连续追踪数据集 该数据集专注于在线连续追踪脑机接口任务,使用深度学习方法进行解码,不同于传统的离线数据分析 NA 促进复杂连续追踪范式下脑机接口解码算法的发展 脑电图(EEG)数据集及其在脑机接口中的应用 机器学习 NA 深度学习(DL) NA 脑电图(EEG)数据 28名独特的人类受试者,共收集了约168小时的脑电图记录
10795 2024-12-14
Pan-Cancer Drug Sensitivity Prediction from Gene Expression using Deep Learning
2024-Nov-15, bioRxiv : the preprint server for biology
研究论文 本文开发了一种基于深度学习的生物信息学工具,用于预测癌症药物敏感性,并优先考虑小分子化合物和基因依赖性,以推动靶向治疗的发展 本文首次采用监督深度学习方法,结合基线癌细胞系基因表达和细胞系无关的扰动-响应共识签名来预测药物敏感性 NA 开发一种能够预测癌症药物敏感性的生物信息学工具,以推动靶向治疗的发展 癌症药物敏感性、小分子化合物和基因依赖性 机器学习 NA 深度学习 深度学习架构 基因表达数据 前列腺癌细胞系
10796 2024-12-14
Investigation of scatter energy window width and count levels for deep learning-based attenuation map estimation in cardiac SPECT/CT imaging
2024-Nov-11, Physics in medicine and biology IF:3.3Q1
研究论文 本研究探讨了在心脏SPECT/CT成像中,使用不同散射能量窗口宽度和计数水平对基于深度学习的衰减图估计的影响 首次全面分析了不同散射窗口对深度学习性能的影响,并评估了在低计数水平下深度学习的表现 研究仅限于心脏SPECT/CT成像,未探讨其他类型的医学成像 评估深度学习在心脏SPECT/CT成像中生成衰减图的效用 不同散射窗口宽度和计数水平对深度学习衰减图估计的影响 计算机视觉 心血管疾病 深度学习 DL模型 图像 1517名受试者,其中386名用于测试,1131名用于训练和验证
10797 2024-12-14
Using spatial video and deep learning for automated mapping of ground-level context in relief camps
2024-Nov-05, International journal of health geographics IF:3.0Q2
研究论文 本文提出了一种基于空间视频和深度学习的解决方案,用于自动绘制救援营地的地面环境 首次提出使用空间视频和深度学习进行动态映射,并开发了空间过滤方法来提高定位精度 研究仅在刚果民主共和国的戈马地区进行,结果的普适性有待验证 开发一种自动化的方法来绘制救援营地的空间特征,以应对数据收集和可持续性方面的挑战 救援营地的空间特征和微环境变化 计算机视觉 NA 卷积神经网络 (CNN) 卷积神经网络 (CNN) 视频 来自刚果民主共和国戈马地区的空间视频数据集
10798 2024-12-14
A Multi-task Neural Network for Image Recognition in Magnetically Controlled Capsule Endoscopy
2024-Nov, Digestive diseases and sciences IF:2.5Q2
研究论文 本研究构建了一个多任务神经网络模型,用于磁控胶囊内窥镜图像中的胃部解剖部位和胃部病变的识别 提出了一种多任务识别模型,能够同时完成胃部解剖部位和胃部病变的识别,相较于现有的单一任务识别模型,具有更高的效率和准确性 未提及具体的局限性 构建一个能够同时识别胃部解剖部位和胃部病变的多任务模型,以提高医生的诊断效率 磁控胶囊内窥镜图像中的胃部解剖部位和胃部病变 计算机视觉 NA 深度学习 多任务神经网络 图像 886名患者的胶囊内窥镜图像数据
10799 2024-12-14
Leveraging transfer learning for predicting total knee arthroplasty failure from post-operative radiographs
2024-Oct, Journal of experimental orthopaedics IF:2.0Q2
研究论文 本研究利用深度学习模型预测全膝关节置换术失败,基于术后X光片进行预测 本研究采用了迁移学习微调方法,利用先前开发的用于预测髋关节假体失败的深度学习模型,展示了其在预测膝关节置换术失败中的有效性 本研究仅基于X光片进行预测,未考虑其他可能影响手术失败的因素 开发一种深度学习模型,用于早期识别全膝关节置换术失败,以预防广泛的翻修手术 全膝关节置换术失败的患者 机器学习 NA 迁移学习微调 卷积神经网络(CNN) 图像 两个患者队列,分别用于模型开发和外部验证,每个队列包含失败和未失败的患者
10800 2024-12-14
Artificial intelligence-based rapid brain volumetry substantially improves differential diagnosis in dementia
2024 Oct-Dec, Alzheimer's & dementia (Amsterdam, Netherlands)
研究论文 本研究评估了一种基于深度学习的人工智能系统在快速脑容量测量中的临床价值,该系统通过自动脑叶分割和年龄性别调整的百分位比较来辅助痴呆的鉴别诊断 本研究展示了人工智能辅助的脑容量测量在提高阿尔茨海默病和额颞叶痴呆诊断准确性方面的显著效果,并显著缩短了处理时间 NA 评估人工智能辅助的快速脑容量测量在痴呆鉴别诊断中的临床价值 55名患者,包括17名阿尔茨海默病患者、18名额颞叶痴呆患者和20名健康对照者 机器学习 阿尔茨海默病 深度学习 NA 图像 55名患者
回到顶部