深度学习在生物医药领域中的应用

本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!

如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!

Sample Image
添加微信请说明来意
Sample Image
微信赞赏

除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。

当前筛选条件: [分区不过滤] [IF不过滤] [发表日期不过滤] [清除筛选条件]
当前共找到 24162 篇文献,本页显示第 11141 - 11160 篇。
序号 推送日期 文章 类型 简述 创新点 不足 研究目的 研究对象 领域 病种 技术 模型 数据类型 样本量
11141 2024-12-06
One-Dimensional W-NETR for Non-Invasive Single Channel Fetal ECG Extraction
2023-07, IEEE journal of biomedical and health informatics IF:6.7Q1
研究论文 本文提出了一种使用W-NETR模型从母体腹部ECG信号中非侵入式提取单通道胎儿ECG的新方法 本文创新性地使用了两个并行的U-net模型结合transformer编码,称为W-NETR,利用transformer的自注意力机制增强远程交互和全局上下文捕捉能力 NA 开发一种高效、准确的非侵入式胎儿ECG提取方法,以实现早期胎儿心脏异常检测和安全分娩 从母体腹部ECG信号中提取胎儿ECG信号 生物医学工程 NA transformer W-NETR ECG信号 使用了合成数据集和真实数据集(ADFECGDB和PCDB)进行测试
11142 2024-12-06
SLEEP-SEE-THROUGH: Explainable Deep Learning for Sleep Event Detection and Quantification From Wearable Somnography
2023-07, IEEE journal of biomedical and health informatics IF:6.7Q1
研究论文 本文提出了一种可解释的深度学习方法,用于从可穿戴睡眠监测设备中检测和量化睡眠事件 本文的创新点在于结合了光学、差压和加速度信号,通过深度网络进行多因素夜间监测,并生成定性和定量数据以提高预测的可解释性 本文的局限性在于样本量较小,且睡眠模式预测的准确性相对较低 本文的研究目的是开发一种可解释的深度学习模型,用于早期诊断和评估睡眠障碍 本文的研究对象是可穿戴设备采集的光学、差压和加速度信号,以及由此生成的类睡眠图信号 机器学习 NA 深度学习 深度网络 信号 20名健康受试者
11143 2024-12-06
Deep Learning Segmentation of the Right Ventricle in Cardiac MRI: The M&Ms Challenge
2023-07, IEEE journal of biomedical and health informatics IF:6.7Q1
研究论文 本文介绍了在心脏MRI图像中使用深度学习方法对右心室进行分割的研究,并参与了M&Ms挑战 提出了新的方法来处理右心室的几何和纹理复杂性,特别是在存在病理如扩张型右心室、三尖瓣反流等情况下的分割 需要整合多种心脏疾病、视角、扫描仪和采集协议以提高自动心脏分割算法的可靠性 提高心脏MRI图像中右心室分割的准确性 右心室在心脏MRI图像中的分割 计算机视觉 心血管疾病 深度学习 nnU-Net 图像 360例心脏MRI病例,包括短轴和长轴4腔视图,来自三家西班牙医院,使用九种不同扫描仪
11144 2024-12-06
Benchmarking Polyp Segmentation Methods in Narrow-Band Imaging Colonoscopy Images
2023-07, IEEE journal of biomedical and health informatics IF:6.7Q1
研究论文 本文提出了一个新的窄带成像(NBI)结肠镜图像息肉分割数据集(PS-NBI2K),并对24种基于深度学习的息肉分割方法进行了基准测试和分析 首次在窄带成像(NBI)数据上对多种基于深度学习的息肉分割方法进行基准测试,并提出了一个新的数据集PS-NBI2K 现有方法在处理较小尺寸和较强干扰的息肉时表现不佳,且在有效性和效率之间存在权衡 评估和改进窄带成像(NBI)结肠镜图像中的息肉分割方法 窄带成像(NBI)结肠镜图像中的息肉分割 计算机视觉 NA 深度学习(DL) NA 图像 2000张窄带成像(NBI)结肠镜图像
11145 2024-12-06
Two-Stage Self-Supervised Cycle-Consistency Transformer Network for Reducing Slice Gap in MR Images
2023-07, IEEE journal of biomedical and health informatics IF:6.7Q1
研究论文 本文提出了一种两阶段自监督循环一致性Transformer网络(TSCTNet),用于减少MR图像中的切片间隙 设计了一种新颖的自监督学习策略,结合了Transformer和CNN结构,以探索局部和全局切片表示 需要进一步验证在更多数据集上的泛化能力 减少MR图像中的切片间隙,重建高分辨率图像 MR图像 计算机视觉 NA 深度学习 Transformer 图像 两个公开的MR图像数据集
11146 2024-12-06
BCR-Net: A deep learning framework to predict breast cancer recurrence from histopathology images
2023, PloS one IF:2.9Q1
研究论文 开发了一种深度学习框架BCR-Net,用于从组织病理学图像预测乳腺癌复发风险 提出了BCR-Net框架,通过多实例学习模型自动加权特征,预测乳腺癌复发风险,优于现有的WSI分类模型 未提及 开发一种AI模型,替代昂贵且耗时的基因检测,预测乳腺癌复发风险 乳腺癌患者的组织病理学图像 机器学习 乳腺癌 深度学习 BCR-Net 图像 99名匿名患者的H&E和Ki67乳腺癌切除全切片图像
11147 2024-12-06
Use of artificial intelligence in diagnosis of head and neck precancerous and cancerous lesions: A systematic review
2020-11, Oral oncology IF:4.0Q2
综述 本文系统综述了人工智能在头颈部癌前病变和癌症诊断中的应用及其诊断准确性 本文首次系统综述了人工智能在头颈部癌前病变和癌症诊断中的应用,并评估了其诊断准确性 本文发现大多数研究存在高偏倚风险,可能导致准确率被高估,且缺乏对其他头颈部病理的AI诊断证据 评估人工智能在头颈部癌前病变和癌症诊断中的应用及其诊断准确性 头颈部癌前病变和癌症,包括口腔上皮发育不良、口腔黏膜下纤维化、口腔鳞状细胞癌和口咽鳞状细胞癌 数字病理 头颈部癌 人工智能 监督学习方法 图像 11项研究,涉及40-270张全切片图像
11148 2024-12-06
Using unfolding case studies to better prepare the public health nutrition workforce to address the social determinants of health
2019-01, Public health nutrition IF:3.0Q2
研究论文 本研究测试了展开案例研究方法对公共卫生营养工作队伍在改善营养食品获取方面的支持能力 提出了一种展开案例研究方法,以支持公共卫生营养工作队伍应对社会决定因素 需要进一步研究展开案例研究在课程中的应用如何影响公共卫生营养实践的准备情况 测试展开案例研究方法对公共卫生营养工作队伍的支持能力 公共卫生营养工作队伍和营养与饮食学本科生 NA NA NA NA NA 38名本科营养与饮食学学生
11149 2024-12-05
Atmospheric scattering model and dark channel prior constraint network for environmental monitoring under hazy conditions
2025-Jun, Journal of environmental sciences (China)
研究论文 提出了一种基于大气散射模型和暗通道先验约束网络的遥感图像去雾方法,用于改善雾霾天气下环境监测系统的精度 利用暗通道信息注入网络(DCIIN)和传输图网络,结合大气散射模型,实现了高质量的图像去雾效果,并通过分支融合模块优化特征权重,增强了去雾效果 NA 解决雾霾天气条件下遥感图像质量下降,导致环境监测系统精度降低的问题 遥感图像去雾 计算机视觉 NA 大气散射模型 暗通道先验约束网络 图像 合成非均匀雾霾遥感数据集
11150 2024-12-05
Meteorological and traffic effects on air pollutants using Bayesian networks and deep learning
2025-Jun, Journal of environmental sciences (China)
研究论文 研究利用贝叶斯网络和深度学习模型分析气象和交通因素对空气污染物的影响 提出了一种结合降雨量和模式的新方法来分析空气污染物和气象变量,并使用LSTM模型进行污染物浓度预测 NA 研究交通因素对空气质量的复杂影响,并构建空气质量预测模型 台北市的空气污染物数据,包括交通流量、速度、降雨模式和气象因素 机器学习 NA 贝叶斯网络、深度学习 LSTM 数据 NA
11151 2024-12-05
Retinal Vessel Plexus Differentiation Based on OCT Angiography Using Deep Learning
2025 Jan-Feb, Ophthalmology science IF:3.2Q1
研究论文 本研究利用深度学习技术,基于OCT血管造影图像对视网膜血管丛进行分割 本研究首次提出仅使用OCT血管造影数据进行视网膜浅层、深层和无血管丛的分割,无需结构OCT图像输入或分割边界 本研究未在更复杂的多种类薄片数据上进行训练,且未涉及财务披露的具体细节 旨在通过深度学习技术,从OCT血管造影图像中分割出视网膜的浅层、深层和无血管丛 视网膜的浅层、深层和无血管丛 计算机视觉 NA 深度学习 U-Net 图像 235个OCTA立方体,来自33名患者
11152 2024-12-05
Correction: Comprehensive Symptom Prediction in Inpatients With Acute Psychiatric Disorders Using Wearable-Based Deep Learning Models: Development and Validation Study
2024-Dec-03, Journal of medical Internet research IF:5.8Q1
correction 对先前发表的文章进行更正 NA NA NA NA NA NA NA NA NA NA
11153 2024-12-05
Letter to the Editor Regarding the Article "Multimodal Deep Learning-based Radiomics Approach for Predicting Surgical Outcomes in Patients with Cervical Ossification of the Posterior Longitudinal Ligament"
2024-Dec-02, Spine IF:2.6Q1
NA NA NA NA NA NA NA NA NA NA NA NA
11154 2024-12-05
Improved Osteoporosis Prediction in Breast Cancer Patients Using a Novel Semi-Foundational Model
2024-Dec-02, Journal of imaging informatics in medicine
研究论文 本文研究了在乳腺癌患者中使用半基础模型改进骨质疏松预测的方法 本文提出了一种新的半基础模型,通过预训练VGG-16、ResNet-50和DenseNet-121在8500个胸部CT数据集上,然后微调以分类199名乳腺癌患者的骨密度,显著提高了三分类性能 本文仅在乳腺癌患者中进行了验证,未来需要在更多疾病状态下进行验证 研究如何通过半基础模型提高骨质疏松预测的准确性 乳腺癌患者的骨密度分类 计算机视觉 乳腺癌 NA 半基础模型 CT图像 8500个胸部CT数据集和199名乳腺癌患者
11155 2024-12-05
Comparison of deep learning schemes in grading non-alcoholic fatty liver disease using B-mode ultrasound hepatorenal window images with liver biopsy as the gold standard
2024-Dec-02, Physica medica : PM : an international journal devoted to the applications of physics to medicine and biology : official journal of the Italian Association of Biomedical Physics (AIFB)
研究论文 本文比较了不同预训练深度学习方案在非酒精性脂肪肝病分级中的表现,使用B模式超声肝肾窗图像作为输入,并以肝活检作为金标准 本文创新性地使用预训练深度学习方案对非酒精性脂肪肝病进行分级,并比较了不同网络模型的性能 本文的局限性在于样本量较小,且仅使用了B模式超声图像作为输入 评估预训练深度学习方案在非酒精性脂肪肝病分级中的表现 非酒精性脂肪肝病患者 计算机视觉 肝病 深度学习 CNN 图像 112名经活检验证的非酒精性脂肪肝病患者
11156 2024-12-05
Protein engineering using variational free energy approximation
2024-Dec-01, Nature communications IF:14.7Q1
研究论文 本文提出了一种基于变分自由能近似的蛋白质工程模型PREVENT,用于生成稳定且功能性的蛋白质变体 PREVENT模型通过学习蛋白质的序列和热力学景观,生成具有高功能性和稳定性的蛋白质变体,显著提高了蛋白质工程的效率 NA 开发一种能够生成稳定且功能性蛋白质变体的新方法,以加速蛋白质工程 大肠杆菌磷酸转移酶N-乙酰-L-谷氨酸激酶(EcNAGK)的40个变体 机器学习 NA 变分自由能近似 PREVENT 序列和结构数据 40个变体,其中85%被发现是功能性的,55%显示出与野生型酶相似的生长速率
11157 2024-12-05
Deep learning based on multiparametric MRI predicts early recurrence in hepatocellular carcinoma patients with solitary tumors ≤5 cm
2024-Dec, European journal of radiology open IF:1.8Q3
研究论文 本文评估了一种基于深度学习的模型在预测肝细胞癌患者术后早期复发中的有效性 本文构建了一个基于ResNet的深度学习模型,结合多参数MRI图像特征和患者临床数据,提高了早期复发的预测性能 NA 评估深度学习模型在预测肝细胞癌患者术后早期复发中的有效性 肝细胞癌患者,单个肿瘤≤5 cm 机器学习 肝癌 动态对比增强MRI (DCE-MRI) ResNet 图像 331名肝细胞癌患者
11158 2024-12-05
Regime switching in coupled nonlinear systems: Sources, prediction, and control-Minireview and perspective on the Focus Issue
2024-Dec-01, Chaos (Woodbury, N.Y.)
综述 本文综述了耦合非线性系统中的状态转换现象,涵盖了理论分析、数据驱动检测方法和非反馈控制策略的最新进展 本文介绍了深度学习在预测电网故障中的应用,利用闪烁网络增强同步,创建控制流行病传播的自适应策略,以及抑制癫痫发作的非反馈控制策略 本文主要集中在理论分析和数据驱动方法上,未深入探讨实际应用中的具体挑战 探讨复杂系统中状态转换的机制,并开发预测、检测和控制这些转换的通用和鲁棒方法 耦合非线性系统中的状态转换现象,包括气候、海洋环流、生态系统、电网和大脑等 NA NA 深度学习 NA NA NA
11159 2024-12-05
Enhanced prediction of protein functional identity through the integration of sequence and structural features
2024-Dec, Computational and structural biotechnology journal IF:4.4Q2
研究论文 本文开发了一种通过整合序列和结构特征来预测蛋白质功能的方法 本文提出了一种结合序列和结构信息的方法,显著提高了蛋白质功能预测的准确性,并发现结构对齐计算的域序列身份对预测影响最大 NA 提高蛋白质功能预测的准确性 蛋白质的功能预测 机器学习 NA AlphaFold2 LightGBM 序列和结构数据 超过300000000个蛋白质序列
11160 2024-12-05
Auxiliary diagnosis of primary bone tumors based on Machine learning model
2024-Dec, Journal of bone oncology IF:3.1Q2
研究论文 研究基于机器学习模型的原发性骨肿瘤辅助诊断,通过深度卷积神经网络和影像组学分析提高诊断准确性 提出了基于深度卷积神经网络的机器学习模型,并结合影像组学分析和差异表达基因筛选方法,提高了骨肿瘤的诊断准确性 研究主要集中在骨肿瘤的诊断,未涉及其他类型的肿瘤或疾病 提高原发性骨肿瘤的诊断准确性,促进早期检测和个性化治疗 原发性骨肿瘤的病理样本和影像数据 数字病理学 骨肿瘤 深度卷积神经网络 (DC-NN) 深度卷积神经网络 (DCNN) 全切片影像 (WSI) 包含所有类别骨肿瘤的病理样本数据库
回到顶部