本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新(使用关键词“['deep learning']”过滤),已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!


除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价19.9元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
| 序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 | 算法框架 | 模型架构 | 性能指标 | 计算资源 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 11281 | 2025-05-23 |
Estimating hair density with XGBoost
2025-Apr, International journal of cosmetic science
IF:2.7Q2
DOI:10.1111/ics.13030
PMID:39551627
|
研究论文 | 本研究探索使用XGBoost算法进行头发密度估计,旨在开发一种更准确和通用的方法 | 采用XGBoost算法进行头发密度估计,相比之前的方法在测试集上达到了95.3%的准确率,显著优于其他研究 | 研究仅使用了895张头皮图像,样本量可能不足以覆盖所有临床情况 | 开发一种更准确和通用的头发密度估计方法 | 头皮图像 | 计算机视觉 | NA | 图像处理 | XGBoost | 图像 | 895张头皮图像(745张用于训练,150张用于测试) | NA | NA | NA | NA |
| 11282 | 2025-05-23 |
Optimizing visible retinal area in pediatric ultra-widefield fundus imaging: The effectiveness of mydriasis and eyelid lifting
2025-Apr, Photodiagnosis and photodynamic therapy
IF:3.1Q2
DOI:10.1016/j.pdpdt.2025.104532
PMID:40015615
|
研究论文 | 本研究探讨了在儿童超广角眼底成像中,通过瞳孔扩大和眼睑提升来最大化可见视网膜区域(VRA)的效果 | 首次在儿童群体中量化评估了瞳孔扩大和眼睑提升对超广角眼底成像可见视网膜区域的协同增效作用 | 样本量较小(53名儿童),且为单中心研究 | 优化儿童超广角眼底成像技术以提高周边视网膜病变检出率 | 53名儿童(106只眼)的超广角眼底图像 | 数字病理 | 视网膜病变 | 超广角Optos成像系统(Daytona P200T) | 基于深度学习的图像分割工具 | 图像 | 53名儿童(106只眼) | NA | NA | NA | NA |
| 11283 | 2025-05-23 |
Preoperative diagnosis of meningioma sinus invasion based on MRI radiomics and deep learning: a multicenter study
2025-Feb-28, Cancer imaging : the official publication of the International Cancer Imaging Society
IF:3.5Q1
DOI:10.1186/s40644-025-00845-5
PMID:40022261
|
研究论文 | 本研究通过结合放射组学和深度学习特征构建融合模型,用于脑膜瘤窦侵犯的术前精确诊断 | 首次构建了结合放射组学和多种深度学习特征(VGG、ResNet、DenseNet)的融合模型,并在多中心数据集中验证了其优越的诊断性能 | 研究为回顾性设计,需要前瞻性研究进一步验证模型的临床适用性 | 开发脑膜瘤窦侵犯的术前精确诊断方法 | 601例经手术病理证实的脑膜瘤患者 | 数字病理 | 脑膜瘤 | MRI影像分析 | 随机森林(RF)、VGG、ResNet、DenseNet | 医学影像 | 601例患者(训练集、内部验证集和独立外部验证集) | NA | NA | NA | NA |
| 11284 | 2025-05-23 |
Enhancing Domain Diversity of Transfer Learning-Based SSVEP-BCIs by the Reconstruction of Channel Correlation
2025-02, IEEE transactions on bio-medical engineering
DOI:10.1109/TBME.2024.3458389
PMID:39255081
|
研究论文 | 本研究提出了一种名为通道相关性重建(RCC)的数据增强方法,用于优化基于稳态视觉诱发电位(SSVEP)的脑机接口(BCI)中迁移学习的源域数据利用 | 通过概率混合源域协方差矩阵的特征向量矩阵来重建训练样本,操纵通道相关性以隐式创建新的合成域,从而增加源域多样性 | NA | 提高SSVEP-BCI系统中迁移学习的性能 | 稳态视觉诱发电位(SSVEP)脑机接口系统 | 脑机接口 | NA | 迁移学习(预训练和微调) | 深度学习模型 | 脑电信号数据 | NA | NA | NA | NA | NA |
| 11285 | 2025-05-23 |
A Deep and Interpretable Learning Approach for Long-Term ECG Clinical Noise Classification
2025-01, IEEE transactions on bio-medical engineering
DOI:10.1109/TBME.2024.3454545
PMID:39231059
|
research paper | 本研究探讨了深度学习模型在长期监测心电图中临床噪声分类的应用,并设计了可解释的架构 | 结合深度学习和可解释系统,提高了临床噪声分类的性能,并为决策过程提供定性解释 | 需避免患者内过拟合,且性能仍有提升空间 | 提高长期监测心电图中临床噪声分类的准确性和可解释性 | 长期监测心电图中的临床噪声 | machine learning | cardiovascular disease | 深度学习 | CNN, Autoencoder | ECG信号 | NA | NA | NA | NA | NA |
| 11286 | 2025-05-23 |
A novel deep learning model for obstructive sleep apnea diagnosis: hybrid CNN-Transformer approach for radar-based detection of apnea-hypopnea events
2024-12-11, Sleep
IF:5.3Q1
DOI:10.1093/sleep/zsae184
PMID:39115132
|
研究论文 | 本研究开发了一种基于雷达数据的深度学习模型,用于检测阻塞性睡眠呼吸暂停(OSA)中的呼吸暂停-低通气事件 | 采用混合CNN-Transformer架构,结合雷达数据进行OSA诊断,为传统多导睡眠图(PSG)提供了一种成本效益高且易于获取的替代方案 | 研究为单中心前瞻性队列研究,样本量相对较小(开发集54人,测试集35人) | 开发并验证一种用于阻塞性睡眠呼吸暂停诊断的深度学习模型 | 疑似睡眠呼吸障碍的参与者 | 数字病理 | 阻塞性睡眠呼吸暂停 | 雷达数据采集 | 混合CNN-Transformer架构 | 雷达信号数据 | 开发集54人,测试集35人 | NA | NA | NA | NA |
| 11287 | 2025-05-23 |
Deep learning assists detection of esophageal cancer and precursor lesions in a prospective, randomized controlled study
2024-04-17, Science translational medicine
IF:15.8Q1
DOI:10.1126/scitranslmed.adk5395
PMID:38630847
|
研究论文 | 本研究开发了一种基于深度卷积神经网络(CNN)的系统,用于检测食管癌及其癌前病变,并在临床实践中验证了其提高高风险食管病变(HrEL)检出率的有效性 | 首次在随机对照研究中验证了深度学习辅助内窥镜检测食管癌及癌前病变的有效性,显著提高了HrEL的检出率 | 研究仅在中国浙江省的一家医院进行,样本来源相对单一 | 提高食管鳞状细胞癌(ESCC)及其癌前病变的内窥镜检出率 | 50岁以上的患者,包括食管癌和癌前病变(HrELs) | 数字病理 | 食管癌 | 深度学习辅助内窥镜检查 | CNN | 内窥镜图像 | 3117名患者(实验组1556人,对照组1561人) | NA | NA | NA | NA |
| 11288 | 2025-05-23 |
Splicing neoantigen discovery with SNAF reveals shared targets for cancer immunotherapy
2024-01-17, Science translational medicine
IF:15.8Q1
DOI:10.1126/scitranslmed.ade2886
PMID:38232136
|
研究论文 | 该研究开发了一个名为SNAF的计算工作流程,用于从患者RNA-Seq数据中预测剪接衍生的免疫原性MHC结合肽和未注释的跨膜蛋白,以发现癌症免疫治疗的共享靶点 | 开发了SNAF工作流程,结合DeepImmuno深度学习策略和新的算法(BayesTS和RNA-SPRINT),首次系统性地识别剪接新抗原,并发现了新的肿瘤特异性细胞外新表位(ExNeoEpitopes) | 研究主要基于计算预测,部分结果需要进一步的实验验证 | 发现癌症免疫治疗的共享靶点 | 剪接衍生的免疫原性MHC结合肽和未注释的跨膜蛋白 | 生物信息学 | 黑色素瘤 | RNA-Seq, 质谱分析, 长读长异构体测序 | DeepImmuno, BayesTS, RNA-SPRINT | RNA-Seq数据 | 多个癌症队列的患者数据 | NA | NA | NA | NA |
| 11289 | 2025-05-23 |
Integrated imaging and molecular analysis to decipher tumor microenvironment in the era of immunotherapy
2022-09, Seminars in cancer biology
IF:12.1Q1
DOI:10.1016/j.semcancer.2020.12.005
PMID:33290844
|
综述 | 本文系统回顾了免疫治疗时代下的放射基因组学最新研究,探讨了AI和深度学习方法的新兴范式与机遇 | 整合影像学和分子分析以非侵入性方式解析肿瘤微环境,特别是在免疫治疗中的应用 | 未提及具体技术或模型的性能限制 | 探索放射基因组学在癌症精准治疗中的临床应用潜力 | 肿瘤微环境,特别是肿瘤浸润淋巴细胞 | 数字病理 | 癌症 | 放射组学,AI,深度学习 | NA | 影像 | NA | NA | NA | NA | NA |
| 11290 | 2025-05-23 |
Emerging role of artificial intelligence in therapeutics for COVID-19: a systematic review
2022-07, Journal of biomolecular structure & dynamics
IF:2.7Q2
DOI:10.1080/07391102.2020.1855250
PMID:33300456
|
系统综述 | 探讨人工智能在COVID-19治疗中的作用 | 首次系统综述了人工智能在COVID-19药物再利用、新药发现、疫苗和抗体开发中的应用 | 人工智能筛选程序目前处于起步阶段,仅依赖此类算法并不可取,需要基于证据的方法来确认其有效性 | 阐明人工智能在COVID-19治疗中的作用 | COVID-19的治疗方法,包括药物再利用、新药发现、疫苗和抗体开发 | 人工智能 | COVID-19 | AI, 机器学习, 深度学习 | NA | 文献数据 | 31项研究 | NA | NA | NA | NA |
| 11291 | 2025-05-23 |
Computer-aided diagnosis of esophageal cancer and neoplasms in endoscopic images: a systematic review and meta-analysis of diagnostic test accuracy
2021-05, Gastrointestinal endoscopy
IF:6.7Q1
DOI:10.1016/j.gie.2020.11.025
PMID:33290771
|
meta-analysis | 通过系统性回顾和荟萃分析评估计算机辅助诊断(CAD)算法在内镜图像中对食管癌及肿瘤的诊断准确性 | 首次通过荟萃分析评估CAD算法在食管癌及肿瘤内镜诊断中的准确性,并提供了全面的诊断性能指标 | 缺乏外部验证和临床应用的表现数据 | 评估CAD算法在内镜图像中对食管癌及肿瘤的诊断准确性 | 食管癌及肿瘤的内镜图像 | digital pathology | esophageal cancer | deep learning, machine learning | NA | image | 21项研究用于系统性回顾,19项研究用于荟萃分析 | NA | NA | NA | NA |
| 11292 | 2025-05-23 |
Performance of artificial intelligence in colonoscopy for adenoma and polyp detection: a systematic review and meta-analysis
2021-01, Gastrointestinal endoscopy
IF:6.7Q1
DOI:10.1016/j.gie.2020.06.059
PMID:32598963
|
meta-analysis | 本文通过系统综述和荟萃分析评估了人工智能在结肠镜检查中检测腺瘤和息肉的表现 | 首次对实时计算机辅助息肉检测(CADe)系统在结直肠肿瘤检测中的随机对照试验进行荟萃分析,证实其显著提高腺瘤检出率 | 纳入的随机对照试验数量有限(5项),部分指标如高级别腺瘤检出率的证据等级不高 | 评估人工智能辅助系统在结直肠肿瘤检测中的临床效能 | 结直肠肿瘤(腺瘤和息肉) | digital pathology | colorectal cancer | deep learning | CADe | colonoscopy images | 4354例患者(来自5项随机对照试验) | NA | NA | NA | NA |
| 11293 | 2025-05-23 |
Lake water-level fluctuation forecasting using machine learning models: a systematic review
2020-Dec, Environmental science and pollution research international
DOI:10.1007/s11356-020-10917-7
PMID:32978734
|
综述 | 本文对机器学习模型在湖泊水位波动预测中的应用进行了全面回顾 | 系统总结了七种流行的机器学习模型在湖泊水位预测中的应用,并讨论了模型输入、性能标准及比较 | 未涉及具体模型的详细实现细节和特定湖泊案例的深入分析 | 评估机器学习模型在湖泊水位波动预测中的效果和应用前景 | 湖泊水位波动 | 机器学习 | NA | NA | ANN, SVM, ANFIS, WA-ANN, WA-ANFIS, WA-SVM, GEP, GP, ELM, DL | 水文数据 | NA | NA | NA | NA | NA |
| 11294 | 2025-05-23 |
Computer-aided diagnosis of liver lesions using CT images: A systematic review
2020-12, Computers in biology and medicine
IF:7.0Q1
DOI:10.1016/j.compbiomed.2020.104035
PMID:33099219
|
综述 | 本文综述了1998年至2020年间发表的关于使用计算机辅助诊断系统通过CT图像预测肝脏良恶性病变的最新技术 | 提供了肝脏病变计算机辅助诊断系统的全面概述,包括传统和基于深度学习的方法 | 未开发出适用于多样化图像的高效分割方法,未研究无监督和半监督深度学习模型 | 概述计算机辅助诊断系统在肝脏病变诊断中的最新技术 | 肝脏病变 | 数字病理学 | 肝脏疾病 | CT成像 | 深度学习与传统方法 | 图像 | NA | NA | NA | NA | NA |
| 11295 | 2025-05-23 |
Accuracy and reliability of automatic three-dimensional cephalometric landmarking
2020-Oct, International journal of oral and maxillofacial surgery
IF:2.2Q2
DOI:10.1016/j.ijom.2020.02.015
PMID:32169306
|
系统综述 | 评估三维颅面图像自动标志点定位的准确性和可靠性 | 比较了知识基础、图谱基础和学习基础算法在自动标志点定位中的表现,发现深度学习方法的性能最佳 | 研究中存在患者选择和参考标准实施方面的偏倚风险,可能导致结果过于乐观 | 评估自动标志点定位技术在三维头影测量分析中的准确性和可靠性 | 人类头部计算机断层扫描或锥形束计算机断层扫描图像 | 医学图像分析 | NA | 自动标志点定位技术 | 深度学习 | 三维图像 | 11项研究,测试数据集样本量从18到77张图像不等 | NA | NA | NA | NA |
| 11296 | 2025-05-23 |
Deep learning for wireless capsule endoscopy: a systematic review and meta-analysis
2020-10, Gastrointestinal endoscopy
IF:6.7Q1
DOI:10.1016/j.gie.2020.04.039
PMID:32334015
|
系统综述与荟萃分析 | 本文通过系统综述和荟萃分析评估了深度学习在无线胶囊内窥镜(WCE)中的应用效果 | 首次对深度学习在WCE中的应用进行系统性评价和荟萃分析 | 现有研究均为回顾性研究且存在较高偏倚风险 | 评估深度学习算法在WCE疾病检测中的性能表现 | 无线胶囊内窥镜图像数据 | 计算机视觉 | 肠道疾病 | 深度学习 | 神经网络 | 医学影像 | 19项研究(45篇原始文献) | NA | NA | NA | NA |
| 11297 | 2025-05-23 |
Machine learning techniques for detecting electrode misplacement and interchanges when recording ECGs: A systematic review and meta-analysis
2020 Sep - Oct, Journal of electrocardiology
IF:1.3Q3
|
系统综述与荟萃分析 | 本文综述了机器学习技术在检测心电图电极错位和互换中的应用及其效果 | 系统评估了机器学习在检测电极错位和互换中的性能,并识别了最常用的机器学习技术 | 研究仅包括14篇文章,可能无法涵盖所有相关研究 | 研究电极错位对心电图信号和解释的影响,评估机器学习检测电极错位的性能 | 心电图(ECG)电极错位和互换 | 机器学习 | 心血管疾病 | 机器学习(ML) | 卷积神经网络(CNN) | 心电图信号 | 14篇文章 | NA | NA | NA | NA |
| 11298 | 2025-05-23 |
Deep Learning in Radiation Oncology Treatment Planning for Prostate Cancer: A Systematic Review
2020-Aug-30, Journal of medical systems
IF:3.5Q2
DOI:10.1007/s10916-020-01641-3
PMID:32862251
|
综述 | 本文系统回顾了深度学习在前列腺癌放射肿瘤治疗计划中的应用 | 总结了基于CT或MRI的不同深度学习网络架构在放射治疗目标轮廓分割中的应用 | 大多数研究使用的患者数据量有限,且这些模型在临床实践中的安全性和有效性仍需进一步验证 | 探索深度学习在放射治疗计划自动化中的应用,以提高治疗效率和质量 | 前列腺癌放射治疗计划中的目标轮廓分割 | 计算机视觉 | 前列腺癌 | 深度学习 | NA | 医学影像(CT或MRI) | 患者数据量有限 | NA | NA | NA | NA |
| 11299 | 2025-10-07 |
Creating Artificial Images for Radiology Applications Using Generative Adversarial Networks (GANs) - A Systematic Review
2020-08, Academic radiology
IF:3.8Q1
DOI:10.1016/j.acra.2019.12.024
PMID:32035758
|
系统综述 | 系统回顾生成对抗网络在放射学中应用的文献 | 首次系统综述GAN在放射学领域的多种应用场景 | 仅包含截至2019年9月发表的研究,可能遗漏最新进展 | 评估GAN在放射学领域的应用现状和效果 | 33项关于GAN在放射学中应用的研究 | 计算机视觉 | NA | 生成对抗网络 | GAN | 医学影像 | 33项研究(2017-2019年发表) | NA | NA | NA | NA |
| 11300 | 2025-05-23 |
Accuracy of deep learning for automated detection of pneumonia using chest X-Ray images: A systematic review and meta-analysis
2020-08, Computers in biology and medicine
IF:7.0Q1
DOI:10.1016/j.compbiomed.2020.103898
PMID:32768045
|
meta-analysis | 该研究通过系统综述和荟萃分析评估了深度学习模型在利用胸部X光图像检测和分类肺炎方面的诊断性能 | 首次对深度学习在肺炎检测和分类中的诊断性能进行了系统评价和荟萃分析 | 存在主要方法学问题,未来研究需解决以应用于临床 | 评估深度学习模型在肺炎检测和分类中的诊断性能 | 肺炎患者与健康对照者的胸部X光图像 | digital pathology | pneumonia | deep learning | DL | image | NA | NA | NA | NA | NA |