深度学习在生物医药领域的应用

本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新(使用关键词“['deep learning']”过滤),已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!

如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!

Sample Image
添加微信请说明来意
Sample Image
微信赞赏

除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价19.9元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。

当前筛选条件: [分区不过滤] [IF不过滤] [发表日期不过滤] [清除筛选条件]
当前共找到 33459 篇文献,本页显示第 11361 - 11380 篇。
序号 推送日期 文章 类型 简述 创新点 不足 研究目的 研究对象 领域 病种 技术 模型 数据类型 样本量 算法框架 模型架构 性能指标 计算资源
11361 2025-10-07
LEyes: A lightweight framework for deep learning-based eye tracking using synthetic eye images
2025-Mar-31, Behavior research methods IF:4.6Q1
研究论文 提出一种轻量级框架LEyes,使用合成眼图像训练神经网络进行视线追踪 与传统逼真渲染方法不同,使用简单合成图像生成器训练神经网络检测瞳孔和角膜反射等关键特征 未明确说明具体性能限制和适用场景限制 解决视线估计领域训练数据缺乏和模型泛化能力差的问题 眼图像中的瞳孔和角膜反射特征 计算机视觉 NA 合成数据生成 神经网络 合成眼图像 NA NA NA 瞳孔和角膜反射的识别与定位精度 成本效益更高的硬件
11362 2025-10-07
Exploring a decade of deep learning in dentistry: A comprehensive mapping review
2025-Feb-19, Clinical oral investigations IF:3.1Q1
综述 本系统图谱综述探讨了深度学习在牙科领域十年间的应用现状、趋势和临床意义 首次对牙科领域深度学习研究进行系统性图谱分析,涵盖2012-2023年间1007项研究,揭示了技术应用模式和临床专业分布 主要依赖监督学习方法(95.2%),需要大量标注数据,且多模态数据融合研究相对不足 系统梳理深度学习在牙科领域的应用现状和发展趋势 2012-2023年间发表的牙科深度学习相关研究文献 数字病理 牙科疾病 深度学习 CNN 影像数据 1007项纳入研究(从21242篇文献中筛选) NA 卷积神经网络 NA NA
11363 2025-10-07
LeFood-set: Baseline performance of predicting level of leftovers food dataset in a hospital using MT learning
2025, PloS one IF:2.9Q1
研究论文 本文提出了一种基于深度学习的食物剩余量预测方法,并创建了首个大规模开放数据集LeFoodSet 创建了首个专门用于食物剩余量估计的大规模开放数据集,并采用多任务学习同时预测剩余量和食物类型 数据集仅包含524对图像,覆盖34种印尼食物类别,样本规模相对有限 开发AI方法来准确预测医院患者餐盘中的食物剩余量 医院患者的餐盘食物图像 计算机视觉 NA 深度学习 CNN 图像 524对图像(餐前餐后对比),涵盖34种印尼食物类别 NA ResNet101 平均绝对误差(MAE), 分类准确率 NA
11364 2025-10-07
Transfer learning in ECG diagnosis: Is it effective?
2025, PloS one IF:2.9Q1
研究论文 本研究首次系统评估迁移学习在心电图多标签分类中的有效性 首次对心电图分类中迁移学习效果进行大规模实证研究,挑战了迁移学习必然优于从头训练的普遍假设 研究结果依赖于特定心电图数据集和神经网络架构,可能不适用于所有场景 评估迁移学习在心电图诊断中的实际效果和适用条件 多标签心电图分类任务 机器学习 心血管疾病 深度学习 CNN, RNN 心电图时间序列数据 多个心电图数据集 NA 卷积神经网络,循环神经网络 分类性能,训练时间,计算成本 NA
11365 2025-10-07
Predictive hybrid model of a grid-connected photovoltaic system with DC-DC converters under extreme altitude conditions at 3800 meters above sea level
2025, PloS one IF:2.9Q1
研究论文 开发用于3800米高海拔极端条件下并网光伏系统的预测混合模型 结合递归特征消除方法与高级正则化技术解决维度灾难问题,提高模型精度 未提及具体数据采集时长和气候条件变化范围 优化高海拔极端条件下光伏系统的预测性能 配备DC-DC优化器的并网光伏系统 机器学习 NA 递归特征消除(RFE),正则化技术 Lasso, Ridge, Bayesian Ridge 光伏系统运行数据 NA Scikit-learn NA 精度, 平均绝对误差, 均方误差, 决定系数 NA
11366 2025-10-07
AI-driven educational transformation in ICT: Improving adaptability, sentiment, and academic performance with advanced machine learning
2025, PloS one IF:2.9Q1
研究论文 本研究通过先进的机器学习和深度学习策略,在ICT教育领域实现教育转型,提升学生适应性、情感分析和学业表现 采用混合堆叠方法结合多种机器学习算法,并将情感分析融入教育框架,为教育技术提供创新解决方案 数据集仅包含1205个样本,可能限制模型的泛化能力;数据来源单一,仅来自Kaggle平台 通过AI技术改善教育领域的适应性、情感分析和学业表现 教育数据中的学生适应性、情感状态和学业表现 机器学习 NA 机器学习,深度学习 决策树,随机森林,XGBoost,梯度提升,CNN,RCNN 结构化数据 1205个样本,包含14个属性 NA 混合堆叠架构,CNN,RCNN 准确率 NA
11367 2025-10-07
Anomaly recognition in surveillance based on feature optimizer using deep learning
2025, PloS one IF:2.9Q1
研究论文 提出一种基于深度学习的监控异常识别框架,通过特征优化技术显著提升识别准确率 创新性地结合两种深度卷积网络进行特征提取,并采用蜻蜓算法和遗传算法进行特征优化,在5折交叉验证中达到99.9%的准确率 未明确说明计算资源需求和实时性能表现 提升监控系统中异常事件识别的准确性和鲁棒性 监控视频中的异常行为识别 计算机视觉 NA 深度学习,特征选择 CNN 图像 未明确说明具体样本数量 NA Up-to-the-Minute-Net(63层CNN), Inception-Resnet-v2 准确率 NA
11368 2025-10-07
Beyond genomics: artificial intelligence-powered diagnostics for indeterminate thyroid nodules-a systematic review and meta-analysis
2025, Frontiers in endocrinology IF:3.9Q2
系统评价与荟萃分析 评估人工智能在不使用基因组测序分类器的情况下诊断不确定甲状腺结节的当前证据 首次系统评估AI在不确定甲状腺结节诊断中的应用,重点关注非基因组学方法,填补了基因组测序分类器成本高昂导致的应用不平等缺口 研究间存在显著异质性,模型存在过拟合问题,缺乏稳健的独立外部验证,当前模型性能尚不适合直接临床实施 分析人工智能在不使用基因组测序分类器的情况下诊断不确定甲状腺结节的诊断准确性 不确定甲状腺结节 医学人工智能 甲状腺结节 超声检查,自然语言处理,细胞学分析 机器学习,深度学习 影像数据,文本数据,细胞学数据 7项研究中的20个模型 NA NA AUC NA
11369 2025-10-07
Determining resources and capabilities in complex context: A decision-making model for banks
2025, PloS one IF:2.9Q1
研究论文 本研究开发了一个用于银行在复杂环境中确定资源和能力的决策模型 提出了一个适用于复杂环境的资源能力决策模型,整合了模糊偏好判断、深度学习分析和成功率预测 研究样本仅限于印度尼西亚国有银行,可能限制模型的普适性 开发银行资源和能力确定的决策模型 印度尼西亚国有银行 机器学习 NA 定性方法、案例研究策略、溯因方法 深度学习 定性数据 印度尼西亚国有银行样本 NA NA 成功率预测 NA
11370 2025-10-07
Deep learning approaches for quantitative and qualitative assessment of cervical vertebral maturation staging systems
2025, PloS one IF:2.9Q1
研究论文 本研究开发并比较了基于人工智能的定量和定性颈椎骨成熟度分期方法 首次提出基于13个颈椎标志点测量的定量QCVM方法,相比传统定性方法展现出更优性能 研究样本仅来自6个医疗中心,可能影响模型的泛化能力 探索人工智能在颈椎骨成熟度分期评估中的应用潜力 颈椎骨成熟度分期系统 计算机视觉 骨科发育评估 侧位头影测量 深度学习模型 图像 3,600张侧位头影测量图像 NA NA Pearson相关系数, 均方误差, 成功检测率, 精确率-召回率, F1分数, 分类准确率 NA
11371 2025-10-07
SwinFishNet: A Swin Transformer-based approach for automatic fish species classification using transfer learning
2025, PloS one IF:2.9Q1
研究论文 提出基于Swin Transformer的迁移学习方法SwinFishNet,用于自动鱼类物种分类 首次将Swin Transformer架构应用于鱼类物种分类任务,通过其分层结构同时捕捉局部和全局特征 NA 开发自动鱼类物种分类方法以提升渔业可持续性、食品安全和市场效率 淡水鱼和海水鱼图像数据 计算机视觉 NA 图像处理 Transformer 图像 三个数据集:12类BD-Freshwater-Fish、10类SmallFishBD和20类FishSpecies PyTorch Swin Transformer 分类准确率,F1分数,召回率,精确率,马修斯相关系数,科恩卡帕系数,混淆矩阵 NA
11372 2025-10-07
Assessing response in endoscopy images of esophageal cancer treated with total neoadjuvant therapy via hybrid-architecture ensemble deep learning
2025, Frontiers in oncology IF:3.5Q2
研究论文 通过混合架构集成深度学习评估食管癌患者接受全新辅助治疗后的内镜图像反应 提出EC-HAENet混合架构集成深度学习模型,在食管癌全新辅助治疗反应评估中显著优于传统内镜活检方法 研究样本仅来自单一医疗中心,需要多中心验证以证明模型的泛化能力 开发准确评估食管癌患者接受全新辅助治疗后病理完全反应的AI模型 食管癌患者的内镜图像 计算机视觉 食管癌 内镜检查 集成深度学习 图像 300名食管癌患者的7,359张内镜图像 NA 混合架构集成模型 AUC, 准确率 NA
11373 2025-10-07
Leveraging spatial dependencies and multi-scale features for automated knee injury detection on MRI diagnosis
2025, Frontiers in bioengineering and biotechnology IF:4.3Q2
研究论文 开发基于图卷积网络和多尺度特征融合的深度学习模型KneeXNet,用于膝关节MRI图像的自动损伤检测 利用图卷积网络捕捉膝关节MRI中的空间依赖关系,结合多尺度特征融合和对比学习方案增强模型判别能力 NA 为临床医生提供高效可靠的膝关节损伤诊断工具,特别关注前交叉韧带撕裂检测 膝关节磁共振成像数据 医学影像分析 膝关节损伤 磁共振成像 图卷积网络 医学图像 1,370名患者的膝关节MRI扫描 PyTorch, Django 图卷积网络, 多尺度特征融合模块 AUC NA
11374 2025-10-07
Transfer Learning and Multi-Feature Fusion-Based Deep Learning Model for Idiopathic Macular Hole Diagnosis and Grading from Optical Coherence Tomography Images
2025, Clinical ophthalmology (Auckland, N.Z.)
研究论文 开发基于迁移学习和多特征融合的深度学习模型,用于从光学相干断层扫描图像诊断和分级特发性黄斑裂孔 结合迁移学习与多特征融合策略,融合传统组学特征与深度特征,构建高效的黄斑裂孔诊断模型 单中心回顾性研究,样本量有限(229张OCT图像),需要更多临床试验验证 评估深度学习系统在特发性黄斑裂孔诊断、分级和预测中的作用 南昌大学第一附属医院特发性黄斑裂孔患者的双眼OCT图像 计算机视觉 眼科疾病 光学相干断层扫描(OCT) CNN, 融合模型 图像 229张OCT图像 NA ResNet101 准确率, AUC, C-index NA
11375 2025-10-07
Predicting cell type-specific epigenomic profiles accounting for distal genetic effects
2024-11-16, Nature communications IF:14.7Q1
研究论文 提出一种能预测未见细胞类型表观遗传信号的深度学习模型Enformer Celltyping 首次在深度学习模型中整合远端DNA相互作用效应(最远100,000碱基对)以实现跨细胞类型的表观遗传信号预测 基因组深度学习模型在遗传变异效应预测方面仍存在局限性 开发能预测不同细胞类型表观遗传谱的计算模型 细胞类型特异性表观遗传信号 机器学习 NA 染色质可及性数据,表观遗传插补 深度学习 DNA序列数据,表观遗传数据 NA NA Enformer NA NA
11376 2025-10-07
Digital profiling of gene expression from histology images with linearized attention
2024-11-14, Nature communications IF:14.7Q1
研究论文 开发了一种名为SEQUOIA的线性化注意力模型,能够从组织学图像中预测癌症转录组谱 首次将线性化注意力机制应用于全切片图像分析,解决了传统transformer在医学图像处理中模型复杂度过高和数据量有限的问题 模型在16种癌症类型上训练,可能对其他罕见癌症类型的泛化能力有限 开发从组织学图像预测基因表达谱的深度学习方法,实现癌症个性化管理 癌症肿瘤样本 数字病理学 癌症 全切片图像分析,转录组分析 Transformer 图像 7584个肿瘤样本用于模型开发,1368个肿瘤样本用于验证 NA 线性化注意力Transformer NA NA
11377 2025-10-07
Foundation model of neural activity predicts response to new stimulus types and anatomy
2024-Aug-31, bioRxiv : the preprint server for biology
研究论文 通过训练神经活动基础模型,准确预测小鼠对新视觉刺激的神经响应并推断神经元解剖特征 首次将基础模型范式应用于神经科学,实现了跨小鼠个体、跨刺激类型和跨任务(从神经活动预测到解剖特征预测)的强泛化能力 模型训练依赖于大规模神经活动数据采集,目前仅针对视觉皮层进行了验证 构建能够泛化到新刺激类型和预测解剖特征的大脑基础模型 小鼠视觉皮层神经元活动 计算神经科学 NA 神经活动记录,功能连接组学 基础模型 神经活动数据,自然视频刺激,解剖数据 多只小鼠的大规模神经活动记录 NA NA 预测准确率 NA
11378 2025-10-07
Lightning Pose: improved animal pose estimation via semi-supervised learning, Bayesian ensembling and cloud-native open-source tools
2024-Jul, Nature methods IF:36.1Q1
研究论文 提出Lightning Pose系统,通过半监督学习、贝叶斯集成和云原生工具改进动物姿态估计 结合半监督学习利用未标记视频数据、设计处理遮挡的网络架构、集成集成学习和卡尔曼平滑的后处理技术 NA 开发更准确可靠的动物姿态估计方法 动物行为视频数据 计算机视觉 NA 深度学习 CNN 视频 NA PyTorch Lightning NA 准确性 云平台
11379 2025-10-07
Digital profiling of cancer transcriptomes from histology images with grouped vision attention
2024-Jan-19, bioRxiv : the preprint server for biology
研究论文 开发了一种基于分组视觉注意力的Transformer模型,用于从组织学图像预测癌症转录组 首次将Transformer架构应用于组织学图像进行转录组预测,并采用预训练策略解决数据量不足的问题 模型在组织水平训练,空间基因表达预测能力仍需进一步验证 从组织学图像中预测癌症转录组特征 9种癌症类型的肿瘤样本和正常组织样本 数字病理学 癌症 空间转录组学,全切片组织学成像 Transformer 组织学图像,基因表达数据 预训练:1,802个正常组织样本;微调评估:4,331个肿瘤样本;验证:1,305个肿瘤样本 NA Transformer Pearson相关系数,均方根误差 NA
11380 2025-10-07
Deep Trans-Omic Network Fusion for Molecular Mechanism of Alzheimer's Disease
2024, Journal of Alzheimer's disease : JAD
研究论文 提出新型深度学习模型MoFNet,通过整合多组学数据和先验功能相互作用来研究阿尔茨海默病的分子机制 首次建模从DNA到RNA和蛋白质的动态信息流,整合多组学数据与SNP、基因和蛋白质间的先验功能相互作用 NA 发现功能连接的多组学特征,研究阿尔茨海默病的分子机制及其上游遗传贡献因素 阿尔茨海默病患者的多组学数据(SNP、基因、蛋白质) 机器学习 阿尔茨海默病 多组学数据整合分析 深度学习 基因组数据,转录组数据,蛋白质组数据 ROS/MAP队列数据 NA MoFNet 预测性能 NA
回到顶部