深度学习在生物医药领域中的应用

本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!

如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!

Sample Image
添加微信请说明来意
Sample Image
微信赞赏

除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。

当前筛选条件: [分区不过滤] [IF不过滤] [发表日期不过滤] [清除筛选条件]
当前共找到 28850 篇文献,本页显示第 11501 - 11520 篇。
序号 推送日期 文章 类型 简述 创新点 不足 研究目的 研究对象 领域 病种 技术 模型 数据类型 样本量
11501 2025-03-19
A dual branch model for predicting microseismic magnitude time series named DTFNet
2025-Mar-13, Scientific reports IF:3.8Q1
研究论文 本文提出了一种名为DTFNet的双分支模型,用于预测微震震级时间序列,以提高煤矿岩爆的智能预警准确性 DTFNet模型结合了时间序列分解和深度学习,通过二次分解和双分支结构有效建模微震时间序列数据,并深度提取微震震级数据的特征 未明确提及具体局限性 提高煤矿岩爆的智能预警准确性 微震震级时间序列数据 机器学习 NA 互补集合经验模态分解、排列熵、变分模态分解 DTFNet(双分支时间序列预测模型) 时间序列数据 多个工作面的微震监测目录
11502 2025-03-19
Exploring the significance of the frontal lobe for diagnosis of schizophrenia using explainable artificial intelligence and group level analysis
2025-Mar-13, Psychiatry research. Neuroimaging
研究论文 本文通过可解释的人工智能和群体水平分析,探讨了额叶在精神分裂症诊断中的重要性 使用可解释的深度学习方法(Grad-CAM)和群体水平分析,识别精神分裂症患者的重要脑区,并在额叶中发现了显著的分类特征 未提及样本的具体数量或多样性,可能影响结果的普适性 研究精神分裂症诊断中额叶的作用,并帮助临床医生制定治疗方案 精神分裂症患者和健康对照组(CN) 数字病理学 精神分裂症 功能性磁共振成像(fMRI)、结构性磁共振成像(sMRI) 深度学习(Grad-CAM) MRI图像(sMRI和fMRI) NA
11503 2025-03-19
Deep Learning for Odor Prediction on Aroma-Chemical Blends
2025-Mar-11, ACS omega IF:3.7Q2
研究论文 本文探讨了深度学习技术在预测香气化学混合物嗅觉品质方面的应用 提出了图神经网络模型,用于准确预测香气化学混合物的嗅觉品质,并分析了模型架构变化对预测性能的显著影响 研究主要集中于分子对的预测,未涉及更复杂的混合物 探索深度学习在预测香气化学混合物嗅觉品质中的应用 香气化学混合物 机器学习 NA 深度学习 图神经网络 分子对数据 NA
11504 2025-03-19
DeepEpiIL13: Deep Learning for Rapid and Accurate Prediction of IL-13-Inducing Epitopes Using Pretrained Language Models and Multiwindow Convolutional Neural Networks
2025-Mar-11, ACS omega IF:3.7Q2
研究论文 本文介绍了一种名为DeepEpilL13的新型深度学习框架,用于快速准确地预测IL-13诱导的表位 DeepEpilL13结合了预训练语言模型和多窗口卷积神经网络(CNN),能够从蛋白质序列中有效探索与IL-13诱导相关的局部和全局序列模式 NA 提高IL-13诱导表位预测的效率和准确性,以推动针对过敏性炎症、COVID-19相关细胞因子风暴及相关疾病的靶向治疗 IL-13诱导的表位 自然语言处理 COVID-19 深度学习 预训练语言模型和多窗口卷积神经网络(CNN) 蛋白质序列 基准数据集和独立的SARS-CoV-2数据集
11505 2025-03-19
Deep Learning-Assisted Triboelectric Sensor for Complex Gesture Recognition
2025-Mar-11, ACS omega IF:3.7Q2
研究论文 本文提出了一种基于人工智能的手势识别系统,结合摩擦电传感器、Arduino信号处理模块和深度学习模块,用于复杂手势识别 将摩擦电技术与深度学习相结合,特别是使用一维卷积神经网络(CNN),实现了超过95%的12种不同手势识别准确率 未提及具体样本量或实验场景的局限性 开发一种灵活、高效且准确的手势识别系统,以满足物联网和5G技术的需求 手势识别系统 机器学习 NA 摩擦电传感器技术 一维卷积神经网络(CNN) 传感器信号 NA
11506 2025-03-19
DDCSR: A Novel End-to-End Deep Learning Framework for Cortical Surface Reconstruction from Diffusion MRI
2025-Mar-05, ArXiv
PMID:40093365
研究论文 本文提出了一种名为DDCSR的端到端深度学习框架,用于从扩散MRI数据直接进行皮质表面重建 首次实现了直接从扩散MRI数据进行皮质表面重建,克服了传统方法依赖T1加权数据和跨模态配准的局限性 未提及具体的样本量或数据来源的多样性限制 提高从扩散MRI数据进行皮质表面重建的准确性和效率 扩散MRI数据 数字病理学 NA 扩散MRI 深度学习框架 MRI图像 NA
11507 2025-03-19
Measurement noise scaling laws for cellular representation learning
2025-Mar-04, ArXiv
PMID:40093368
研究论文 本文探讨了测量噪声对深度学习模型性能的影响,并提出了一个信息论指标来评估细胞表示模型的质量 首次将测量噪声作为性能扩展轴,并发现其遵循独特的对数规律,同时提出了一个通用的信息论指标来评估模型质量 研究主要基于生物单细胞基因组数据,虽然结果在图像分类模型中也有体现,但尚未广泛验证于其他领域 研究测量噪声对深度学习模型性能的影响,并探索其在数据生成和整理中的指导作用 生物单细胞基因组数据和图像分类模型 机器学习 NA 单细胞基因组学 表示学习模型 基因组数据和图像数据 多个数据集,具体样本数量未明确
11508 2025-03-19
BMSMM-Net: A Bone Metastasis Segmentation Framework Based on Mamba and Multiperspective Extraction
2025-03, Academic radiology IF:3.8Q1
研究论文 本文提出了一种基于Mamba和多视角提取的骨转移分割框架BMSMM-Net,旨在提高骨转移的快速、精确分割 BMSMM-Net框架集成了新提出的Bottleneck Gating Mamba层(BGM)、Skip-Mamba(SKM)模块和多视角提取(MPE)模块,增强了长程依赖性和多尺度特征融合能力 NA 提高骨转移的自动分割精度,以改善患者预后和生存率 骨转移病灶 计算机视觉 骨转移 深度学习 BMSMM-Net 医学图像 BM-Seg数据集
11509 2025-03-19
CryoSamba: Self-supervised deep volumetric denoising for cryo-electron tomography data
2025-Mar, Journal of structural biology IF:3.0Q3
研究论文 本文介绍了CryoSamba,一种基于自监督深度学习的模型,用于去噪冷冻电子断层扫描(cryo-ET)图像 CryoSamba通过深度学习插值平均运动补偿的邻近平面,增强单连续2D平面,模仿增加曝光,从而增强相干信号并减少高频噪声,显著提高断层扫描对比度和信噪比 NA 提高冷冻电子断层扫描图像的信噪比和对比度,以便更好地进行3D断层扫描视觉解释 冷冻电子断层扫描图像 计算机视觉 NA 深度学习 自监督深度学习模型 3D体积数据 NA
11510 2025-03-19
Real-time quantification of activated sludge concentration and viscosity through deep learning of microscopic images
2025-Mar, Environmental science and ecotechnology IF:14.0Q1
研究论文 本文介绍了一种通过深度学习分析显微镜图像实时量化活性污泥浓度和粘度的系统 创新点在于使用Xception卷积神经网络架构,从显微镜图像中实时定量识别活性污泥的混合液悬浮固体(MLSS)和表观粘度 研究仅在实验室规模的序批式反应器中进行,尚未在实际废水处理厂中验证 研究目的是开发一种实时在线测量活性污泥参数的方法,以支持未来智能废水处理厂的运行 研究对象是活性污泥的混合液悬浮固体(MLSS)和表观粘度 计算机视觉 NA 深度学习 Xception卷积神经网络 显微镜图像 41482张高质量图像
11511 2025-03-19
Explainable deep learning algorithm for identifying cerebral venous sinus thrombosis-related hemorrhage (CVST-ICH) from spontaneous intracerebral hemorrhage using computed tomography
2025-Mar, EClinicalMedicine IF:9.6Q1
研究论文 本研究开发了一种可解释的深度学习模型,用于基于非增强计算机断层扫描(NCCT)快速识别由脑静脉窦血栓形成(CVST)引起的脑出血(ICH) 提出了一种基于迁移学习的3D U-Net模型,结合分割和分类,仅使用入院时的平扫CT进行CVST-ICH的识别,并采用多种可解释性方法(如Grad-CAM++、SHAP、IG和遮挡)来理解模型的注意力 需要更大样本量的前瞻性验证 开发一种可解释的深度学习模型,用于快速识别CVST-ICH与自发性脑出血(sICH) CVST-ICH患者和自发性脑出血(sICH)患者 数字病理学 脑静脉窦血栓形成(CVST) 非增强计算机断层扫描(NCCT) 3D U-Net CT图像 内部数据集包括102名CVST-ICH患者和306名sICH患者,外部数据集包括38名CVST-ICH患者和119名sICH患者
11512 2025-03-19
Deep learning-based model for prediction of early recurrence and therapy response on whole slide images in non-muscle-invasive bladder cancer: a retrospective, multicentre study
2025-Mar, EClinicalMedicine IF:9.6Q1
研究论文 本研究旨在开发和验证基于深度学习的早期复发预测模型(ERPM)和治疗反应预测模型(TRPM),以辅助非肌层浸润性膀胱癌(NMIBC)患者的临床决策 首次在NMIBC患者中开发并验证了基于全切片图像的深度学习模型,用于预测早期复发和治疗反应 研究为回顾性研究,需要进一步的前瞻性验证 开发并验证基于深度学习的预测模型,以辅助NMIBC患者的临床决策 非肌层浸润性膀胱癌(NMIBC)患者 数字病理学 膀胱癌 深度学习 多实例学习和集成学习模型 全切片图像(H&E染色和免疫组化染色) 1275名患者的4395张全切片图像
11513 2025-03-19
Non-invasive Assessment of Coronary Artery Disease: The Role of AI in the Current Status and Future Directions
2025-Feb, Cureus
研究论文 本文探讨了人工智能在非侵入性冠状动脉疾病评估中的当前应用和未来发展方向 强调了人工智能,特别是深度学习和自然语言处理技术,在提高非侵入性冠状动脉疾病评估诊断准确性和临床效率方面的革命性潜力 人工智能的广泛应用面临数据隐私、高计算成本和资源分配不均等关键挑战 研究目的是探索人工智能在非侵入性冠状动脉疾病评估中的应用及其未来发展方向 冠状动脉疾病(CAD)患者 自然语言处理 心血管疾病 深度学习,自然语言处理 NA NA NA
11514 2025-03-19
The Pfam protein families database: embracing AI/ML
2025-Jan-06, Nucleic acids research IF:16.6Q1
研究论文 本文介绍了Pfam蛋白质家族数据库的最新发展,包括与InterPro的整合、ECOD结构分类的协调、以及利用AlphaFold结构预测优化域边界和识别新域 利用AlphaFold结构预测优化域边界和识别新域,开发了Pfam-N,通过深度学习扩展家族覆盖范围,使UniProtKB覆盖范围增加了8.8% 尽管有最新进展,仍有许多蛋白质家族未被分类,Pfam仍在努力实现蛋白质宇宙的全面覆盖 更新和扩展Pfam蛋白质家族数据库,提高蛋白质域和家族的注释和分析能力 蛋白质域和家族 生物信息学 NA 深度学习,AlphaFold结构预测 深度学习模型 蛋白质序列和结构数据 NA
11515 2025-03-19
Comparison of 3D and 2D area measurement of acute burn wounds with LiDAR technique and deep learning model
2025, Frontiers in artificial intelligence IF:3.0Q2
研究论文 本文比较了使用LiDAR技术和深度学习模型进行急性烧伤伤口3D和2D面积测量的差异 开发了结合深度学习模型和LiDAR技术的应用B.E.N.,用于烧伤伤口的3D和2D测量,并验证了3D分割结果与实际烧伤伤口大小的匹配度 研究中未明确提及样本的具体数量,且仅针对烧伤伤口进行了研究,未涉及其他类型的伤口 比较3D和2D测量烧伤伤口面积的准确性,并探讨肢体曲率对3D/2D面积比的影响 烧伤伤口 计算机视觉 烧伤 LiDAR技术 深度学习模型 图像 NA
11516 2025-03-19
Machine and deep learning to predict viral fusion peptides
2025, Computational and structural biotechnology journal IF:4.4Q2
研究论文 本文探讨了使用机器学习和深度学习模型预测病毒融合肽的方法 采用基于机器学习和深度学习的方法,特别是使用最先进的氨基酸标记分类转换器模型,有效预测病毒融合肽的位置 对于实验数据有限的病毒,预测结果可能存在不确定性 开发能够预测病毒融合蛋白序列中融合肽段的生物信息学工具 病毒融合蛋白及其融合肽段 自然语言处理 NA 机器学习和深度学习 转换器模型 蛋白质序列 超过50种模型和特征的组合
11517 2025-03-19
Explainable AI in medical imaging: an interpretable and collaborative federated learning model for brain tumor classification
2025, Frontiers in oncology IF:3.5Q2
研究论文 本文提出了一种可解释的协作联邦学习模型(CFLM),用于脑肿瘤分类,结合了可解释的人工智能(XAI)技术 结合了联邦学习(FL)和GoogLeNet架构,解决了传统集中式模型在数据多样性和模型透明度方面的挑战 研究中仅使用了10个客户端和50轮通信,样本量和训练轮次可能不足以全面验证模型的泛化能力 提高脑肿瘤分类的准确性和模型的可解释性,以支持临床决策 脑肿瘤(包括胶质瘤、脑膜瘤、无肿瘤和垂体瘤) 计算机视觉 脑肿瘤 深度学习(DL)、联邦学习(FL)、Grad-CAM、显著性图可视化 GoogLeNet MRI图像 10个客户端,每个客户端使用分散的本地数据集进行训练
11518 2025-03-19
Effect of natural and synthetic noise data augmentation on physical action classification by brain-computer interface and deep learning
2025, Frontiers in neuroinformatics IF:2.5Q3
研究论文 本研究探讨了自然和合成噪声数据增强对通过脑机接口和深度学习进行物理动作分类的影响 提出了两种噪声数据增强方法(自然和合成),并比较了它们对分类性能的影响,特别是在资源有限的设备上应用的潜力 研究中使用的深度神经网络相对简单,可能限制了模型的复杂性和性能 研究环境噪声对脑机接口中物理动作分类的影响 脑电图(EEG)信号和物理动作分类 脑机接口 NA 噪声数据增强(NDA) 全连接网络(FCN)和卷积神经网络(CNN) 脑电图(EEG)信号 使用grasp-and-lift(GAL)数据集中的手指-手掌-手操作数据
11519 2025-03-19
Patho-Net: enhancing breast cancer classification using deep learning and explainable artificial intelligence
2025, American journal of cancer research IF:3.6Q2
研究论文 本文提出了一种名为Patho-Net的深度学习模型,用于乳腺癌分类,解决了可扩展性、固定大小输入图像和有限数据集上的过拟合问题 Patho-Net模型结合了GRU网络和U-Net架构,无需调整图像大小,提高了计算效率,并通过XAI提供了模型预测的清晰视觉解释 NA 提高乳腺癌分类的准确性和可解释性 乳腺癌组织病理学图像 数字病理学 乳腺癌 深度学习,可解释人工智能(XAI) U-Net,GRU 图像 100X BreakHis数据集
11520 2025-03-19
BMWP: the first Bengali math word problems dataset for operation prediction and solving
2025, Discover artificial intelligence
研究论文 本文介绍了首个孟加拉语数学应用题数据集BMWP,用于操作预测和解题,并探讨了使用深度学习技术进行孟加拉语应用题操作预测的方法 首次创建了孟加拉语数学应用题数据集BMWP,填补了低资源语言在这一领域的空白 数据集仅包含8653个应用题,可能不足以覆盖所有复杂情况 评估和提升AI模型在解决低资源语言数学应用题方面的能力 孟加拉语数学应用题 自然语言处理 NA 深度学习 深度学习神经网络架构 文本 8653个孟加拉语数学应用题
回到顶部