本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!
除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1141 | 2024-12-05 |
Multimodal Deep Learning-based Radiomics Approach for Predicting Surgical Outcomes in Patients With Cervical Ossification of the Posterior Longitudinal Ligament
2025-Aug-15, Spine
IF:2.6Q1
DOI:10.1097/BRS.0000000000005227
PMID:39618126
|
NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
1142 | 2025-07-25 |
Multimodal Deep Learning for Grading Carpal Tunnel Syndrome: A Multicenter Study in China
2025-Aug, Academic radiology
IF:3.8Q1
DOI:10.1016/j.acra.2025.02.043
PMID:40157849
|
研究论文 | 本研究开发了一种结合临床信息和多模态超声特征的联合深度学习模型(CTSGrader),用于评估腕管综合征(CTS)的严重程度 | 首次开发了结合临床信息和多模态超声特征的联合深度学习模型,用于CTS分级,并在多中心研究中验证了其性能 | 研究为回顾性和前瞻性混合设计,可能影响结果的普遍性 | 开发并验证一种联合深度学习模型,用于更准确地评估腕管综合征的严重程度 | 腕管综合征患者 | 数字病理 | 腕管综合征 | 深度学习,超声成像 | 联合深度学习模型(CTSGrader) | 超声图像,临床数据 | 训练集680例,内部验证集173例,外部验证集174例,外部验证集2(跨厂商测试)224例 |
1143 | 2025-07-25 |
Deep learning-based prediction of enhanced CT scans for lymph node metastasis in esophageal squamous cell carcinoma
2025-Aug, Japanese journal of radiology
IF:2.9Q2
DOI:10.1007/s11604-025-01780-y
PMID:40214915
|
research paper | 利用深度学习技术预测食管鳞状细胞癌淋巴结转移的研究 | 提出了一种结合CNN和LSTM的新型深度学习模型LymphoReso-Net,用于分析增强CT图像并预测淋巴结转移 | 研究为回顾性研究,样本量有限(441例患者),且仅基于动脉期增强CT图像 | 优化食管鳞状细胞癌的治疗策略并改善患者预后 | 食管鳞状细胞癌患者 | digital pathology | esophageal squamous cell carcinoma | contrast-enhanced CT | CNN, LSTM | image | 441例接受根治性食管切除术和区域淋巴结清扫术的ESCC患者 |
1144 | 2025-07-25 |
Habitat Radiomics and Deep Learning Features Based on CT for Predicting Lymphovascular Invasion in T1-stage Lung Adenocarcinoma: A Multicenter Study
2025-Aug, Academic radiology
IF:3.8Q1
DOI:10.1016/j.acra.2025.04.005
PMID:40253221
|
研究论文 | 本研究探讨了基于CT的生境放射组学和深度学习特征在预测T1期肺腺癌淋巴管浸润中的应用 | 首次使用K-means算法聚类CT图像和表观扩散系数图,构建生境放射组学模型,并比较其与传统放射组学和深度学习模型的性能 | 回顾性研究设计可能引入选择偏倚,样本量相对较小且来自三个中心 | 预测T1期肺腺癌患者的淋巴管浸润状态 | 349名T1期肺腺癌患者 | 数字病理学 | 肺癌 | CT成像,K-means聚类算法 | 放射组学模型,生境模型,深度学习模型 | CT图像 | 349名患者(内部训练集210名,外部测试集139名) |
1145 | 2025-07-25 |
Unsupervised deep clustering of high-resolution satellite imagery reveals phenotypes of urban development in Sub-Saharan Africa
2025-Aug-01, The Science of the total environment
DOI:10.1016/j.scitotenv.2025.179739
PMID:40480170
|
研究论文 | 利用无监督深度学习框架和高分辨率卫星图像对撒哈拉以南非洲多个城市的城市发展表型进行分类 | 提出了一种新颖的分层深度学习框架,用于无监督聚类高分辨率卫星图像,揭示城市发展的多维特征 | 研究仅覆盖了撒哈拉以南非洲的少数城市,可能无法完全代表该地区的所有城市发展模式 | 通过无监督深度学习对高分辨率卫星图像进行分析,以实现对城市环境的近实时监测 | 撒哈拉以南非洲多个城市(阿克拉、达喀尔、达累斯萨拉姆和基加利)的卫星图像 | 计算机视觉 | NA | 无监督深度学习 | 分层深度学习框架 | 卫星图像 | 多个城市(阿克拉、达喀尔、达累斯萨拉姆和基加利)的高分辨率卫星图像 |
1146 | 2025-07-25 |
Enhanced deep learning framework for real-time instrument detection and tracking in laparoscopic surgery using advanced augmentation and tracking techniques
2025-Aug, Surgical endoscopy
DOI:10.1007/s00464-025-11932-w
PMID:40588604
|
研究论文 | 该研究提出了一种增强的深度学习框架,用于腹腔镜手术中手术器械的实时检测与追踪,结合了先进的数据增强和追踪技术 | 整合了YOLOv9n、ByteTrack和BoT-SORT等最新算法,实现了高精度和快速响应的实时检测与追踪系统 | 研究依赖于特定数据集(m2cai16-tool-locations),可能在其他手术场景中的泛化能力有待验证 | 提升微创手术中手术器械的实时检测与追踪精度,优化手术流程和患者安全 | 腹腔镜手术中的手术器械 | 计算机视觉 | NA | 深度学习、计算机视觉技术 | YOLOv9n、ByteTrack、BoT-SORT | 图像 | 使用m2cai16-tool-locations检测数据集 |
1147 | 2025-07-25 |
AI-Assisted Post Contrast Brain MRI: Eighty Percent Reduction in Contrast Dose
2025-Aug, Academic radiology
IF:3.8Q1
DOI:10.1016/j.acra.2024.10.026
PMID:39592383
|
研究论文 | 本研究提出并评估了一种深度学习方法,用于从仅使用20%标准剂量的钆基对比剂的多参数MRI中预测全剂量对比增强T1加权图像 | 利用深度学习技术实现钆基对比剂剂量减少80%的同时保持诊断准确性 | 研究样本量相对较小(101例患者),且未评估所有可能的脑部病变类型 | 开发减少钆基对比剂使用剂量同时保持MRI诊断准确性的方法 | 脑部MRI图像 | 医学影像分析 | 脑部疾病 | 深度学习 | DL网络 | MRI图像 | 101名患者的多中心前瞻性研究数据 |
1148 | 2025-07-25 |
A multi-stage 3D convolutional neural network algorithm for CT-based lung segment parcellation
2025-Aug, Journal of applied clinical medical physics
IF:2.0Q3
DOI:10.1002/acm2.70193
PMID:40698834
|
研究论文 | 本文提出了一种基于深度学习的CT图像肺段分割算法,用于评估肺通气和灌注的区域异质性 | 开发了一种多阶段3D卷积神经网络算法,能够直接从胸部CT图像进行端到端的肺段分割 | COPD患者的肺段分割结果与健康对照组相比存在较大差异 | 验证和展示基于深度学习的CT肺段分割在临床混合气道疾病患者中的适用性 | 混合气道疾病患者和健康个体的胸部CT图像 | 数字病理 | 慢性阻塞性肺疾病(COPD) | 3D卷积神经网络 | CNN | CT图像 | 123张训练用胸部CT图像和40张验证用CT图像(20张来自训练集,20张前瞻性收集:10名健康人和10名COPD患者) |
1149 | 2025-07-25 |
Gradient-driven pixel connectivity convolutional neural networks classification based on U-Net lung nodule segmentation
2025-Aug, Medical engineering & physics
IF:1.7Q3
DOI:10.1016/j.medengphy.2025.104376
PMID:40701761
|
研究论文 | 本研究提出了一种基于深度学习的诊断辅助系统,用于从CT图像中早期检测和分类肺结节 | 结合U-Net卷积神经网络进行语义分割,以及后续的特征提取和选择,再通过另一个卷积神经网络进行分类 | 未提及样本多样性或外部验证集的性能 | 提高肺结节的早期检测和分类准确性,以改善肺癌患者的治疗效果 | 肺结节 | 数字病理学 | 肺癌 | 深度学习 | U-Net, CNN | 图像 | 基于LUNA16数据集 |
1150 | 2025-07-25 |
An enhanced UHMWPE wear particle detection approach based on YOLOv9
2025-Aug, Medical engineering & physics
IF:1.7Q3
DOI:10.1016/j.medengphy.2025.104377
PMID:40701762
|
研究论文 | 本研究提出了一种基于深度学习的增强YOLOv9模型,用于自动化检测超高分子量聚乙烯(UHMWPE)磨损颗粒,旨在解决传统手动检测方法的不足 | 采用改进的YOLOv9模型,结合可编程梯度信息(PGI)和广义高效层聚合网络(GELAN)提升小物体定位和检测精度,并集成自定义Focal Loss函数以解决类别不平衡问题 | NA | 开发一种高精度、可扩展且经济高效的自动化检测方法,用于UHMWPE磨损颗粒的检测,以改善骨科和脊柱植入物的监测和临床决策 | 超高分子量聚乙烯(UHMWPE)磨损颗粒 | 计算机视觉 | 骨科疾病 | 场发射枪扫描电子显微镜(FEG-SEM)成像 | YOLOv9 | 图像 | NA |
1151 | 2025-07-25 |
The Power of Hellmann-Feynman Theorem: Kohn-Sham DFT Energy Derivatives with Respect to the Parameters of the Exchange-Correlation Functional at Linear Cost
2025-Jul-24, The journal of physical chemistry. A
DOI:10.1021/acs.jpca.5c01771
PMID:40653651
|
研究论文 | 本文应用Hellmann-Feynman定理计算Kohn-Sham DFT能量对交换相关泛函参数的导数,显著提高了计算效率 | 利用Hellmann-Feynman定理实现了Kohn-Sham DFT能量对交换相关泛函参数导数的线性复杂度计算,相比自动微分方法显著加速 | 研究仅基于LDA和GGA泛函进行验证,未涉及更复杂的泛函形式 | 开发高效计算科学模型参数导数的方法,以加速机器学习中的梯度优化和深度学习集成 | Kohn-Sham DFT能量对交换相关泛函参数的导数 | 机器学习 | NA | Hellmann-Feynman定理 | Kohn-Sham DFT | NA | 一系列烷烃(n=4...64)使用双zeta基组 |
1152 | 2025-07-25 |
Artificial Neural Networks and Deep Learning in Solid Organ Transplantation
2025-Jul-24, Transplantation
IF:5.3Q1
DOI:10.1097/TP.0000000000005500
PMID:40702591
|
review | 本文综述了人工神经网络和深度学习在实体器官移植中的应用,并提供了相关术语解释和使用建议 | 概述了神经网络在移植领域的最新应用,特别是处理非表格数据(如图像和文本)的能力 | 模型结果的解释需要考虑上下文,存在一定的黑箱预测问题 | 探讨人工神经网络和深度学习在实体器官移植中的应用潜力 | 实体器官移植 | machine learning | NA | deep learning | artificial neural networks | image, text | NA |
1153 | 2025-07-25 |
Malignancy classification of thyroid incidentalomas using 18F-fluorodeoxy-d-glucose PET/computed tomography-derived radiomics
2025-Jul-24, Nuclear medicine communications
IF:1.3Q3
DOI:10.1097/MNM.0000000000002031
PMID:40702878
|
研究论文 | 本研究探讨了18F-FDG PET/CT衍生的放射组学特征在区分甲状腺偶发瘤良恶性中的作用 | 利用PET和CT图像的放射组学特征进行甲状腺偶发瘤的良恶性分类,并与传统的TIRADS分类进行比较 | 样本量较小(46例患者),未来需要更大样本和深度学习方法验证 | 研究非侵入性PET/CT放射组学特征在甲状腺偶发瘤良恶性鉴别中的价值 | 46例接受甲状腺超声和手术的PET/CT甲状腺偶发瘤患者 | 数字病理学 | 甲状腺癌 | 18F-FDG PET/CT成像 | NA | 医学影像(PET和CT图像) | 46例患者(36例恶性,10例良性) |
1154 | 2025-07-25 |
Mycophenolate mofetil-induced colitis versus colonic graft-versus-host disease: a comparative histologic study with artificial intelligence model development
2025-Jul-24, Histopathology
IF:3.9Q1
DOI:10.1111/his.15521
PMID:40703053
|
研究论文 | 本研究比较了MMF诱导的结肠炎和结肠GVHD的组织病理学特征,并开发了一种使用深度学习卷积神经网络(CNNs)的数字工具,用于半自动化量化嗜酸性粒细胞 | 开发了一种基于深度学习的数字工具,用于半自动化量化嗜酸性粒细胞,为MMF诱导的结肠炎和结肠GVHD的鉴别诊断提供辅助工具 | MMF诱导的结肠炎在SCT患者中较为罕见,因此病理学家在诊断时需要较高的阈值 | 比较MMF诱导的结肠炎和结肠GVHD的组织病理学特征,并开发一种数字工具辅助诊断 | MMF和GVHD结肠炎病例,以及接受移植并处于GVHD风险中的患者 | 数字病理学 | 结肠炎 | 深度学习卷积神经网络(CNNs) | CNN | 组织病理学图像 | 95名患者(GVHD组37例,MMF组25例,GVHD vs. MMF组33例) |
1155 | 2025-07-25 |
Deep Learning to Differentiate Parkinsonian Syndromes Using Multimodal Magnetic Resonance Imaging: A Proof-of-Concept Study
2025-Jul-24, Movement disorders : official journal of the Movement Disorder Society
IF:7.4Q1
DOI:10.1002/mds.30300
PMID:40704399
|
研究论文 | 本研究利用深度学习和多模态磁共振成像(MRI)数据,开发了一种基于三维卷积神经网络(3D CNN)的方法,用于区分多系统萎缩(MSA)和帕金森病(PD) | 首次将多模态MRI数据(灰质密度图和平均扩散率图)与3D CNN结合,用于区分MSA和PD,并通过激活图分析提供了模型的可解释性 | 样本量相对较小(92例MSA患者和64例PD患者),且为回顾性研究 | 开发一种基于MRI的自动诊断工具,用于区分帕金森综合征 | 多系统萎缩(MSA)患者和帕金森病(PD)患者 | 数字病理学 | 帕金森综合征 | 磁共振成像(MRI),包括T1加权序列和扩散张量成像 | 3D CNN | 图像 | 156例患者(92例MSA,64例PD) |
1156 | 2025-07-25 |
Deep Learning Based Evaluation of Skeletal Maturation: A Comparative Analysis of Five Hand-Wrist Methods
2025-Jul-24, Orthodontics & craniofacial research
IF:2.4Q2
DOI:10.1111/ocr.70008
PMID:40704688
|
研究论文 | 本研究通过比较五种不同的手腕骨骼成熟度评估方法,评估了深度学习算法在骨骼年龄估计中的有效性 | 使用YOLOv8x深度学习模型对五种手腕骨骼成熟度分类方法进行比较分析,并展示了在不同骨骼成熟阶段的分类性能 | 在青春期生长高峰阶段(S-H2和MP3-Cap阶段)的分类性能略低 | 评估深度学习算法在骨骼年龄估计中的诊断可靠性 | 6572名8-16岁正畸患者的手腕X光片 | 计算机视觉 | NA | YOLOv8x深度学习模型 | YOLOv8x-cls | 图像 | 6572张手腕X光片 |
1157 | 2025-07-25 |
MSA-Net: a multi-scale and adversarial learning network for segmenting bone metastases in low-resolution SPECT imaging
2025-Jul-24, EJNMMI physics
IF:3.0Q2
DOI:10.1186/s40658-025-00785-w
PMID:40705118
|
research paper | 提出了一种基于深度学习的多尺度和对抗学习网络MSA-Net,用于在低分辨率SPECT成像中分割骨转移病灶 | 结合条件对抗学习和多尺度特征提取生成器,采用级联扩张卷积、多尺度模块和深度监督,提高了多尺度病灶检测的准确性,尤其是对小而聚集的病灶 | 未提及具体的数据集多样性或模型在其他类型癌症中的泛化能力 | 提高低分辨率SPECT成像中骨转移病灶的分割准确性,以支持肺癌的临床决策 | 骨转移病灶 | digital pathology | lung cancer | SPECT imaging | MSA-Net (multi-scale and adversarial learning network) | image | 286 clinically annotated SPECT scintigrams |
1158 | 2025-07-25 |
Guided multi-objective generative AI to enhance structure-based drug design
2025-Jul-23, Chemical science
IF:7.6Q1
DOI:10.1039/d5sc01778e
PMID:40463429
|
研究论文 | 本文介绍了一种名为IDOLpro的新型生成化学AI,结合扩散模型与多目标优化,用于基于结构的药物设计 | IDOLpro首次结合扩散模型与多目标优化,能够生成满足多种目标理化性质的新型配体,且在结合亲和力和合成可及性上优于现有方法 | 未明确提及具体局限性 | 开发一种能够生成满足多种目标理化性质的新型配体的生成化学AI,以加速药物发现过程 | 药物分子配体 | 药物发现 | NA | 扩散模型、多目标优化 | 扩散模型 | 化学结构数据 | 两个基准测试集 |
1159 | 2025-07-25 |
Development and validation of an improved volumetric breast density estimation model using the ResNet technique
2025-Jul-23, Biomedical physics & engineering express
IF:1.3Q3
DOI:10.1088/2057-1976/adecac
PMID:40623423
|
研究论文 | 本研究开发并验证了一种改进的基于ResNet技术的乳腺体积密度估计模型 | 首次应用ResNet深度学习模型于乳腺体积密度估计,性能优于传统方法和之前的机器学习模型 | 研究仅基于历史数据,未涉及前瞻性验证 | 提高从存档X线乳腺摄影中估计乳腺体积密度的准确性 | 乳腺X线摄影图像 | 计算机视觉 | 乳腺癌 | ResNet深度学习技术 | Random Forest, XG-Boost, ResNet | 医学影像 | NA |
1160 | 2025-07-25 |
Development of a deep learning model for T1N0 gastric cancer diagnosis using 2.5D radiomic data in preoperative CT images
2025-Jul-23, NPJ precision oncology
IF:6.8Q1
DOI:10.1038/s41698-025-01055-9
PMID:40696140
|
research paper | 开发了一种基于2.5D放射组学数据和深度学习的模型,用于术前CT图像中T1N0胃癌的诊断 | 首次将2.5D放射组学数据和多实例学习(MIL)应用于胃癌诊断,结合ResNet101和XGBoost模型 | 研究仅基于两个医疗中心的数据,可能影响模型的泛化能力 | 提高早期胃癌(EGC)无淋巴结转移的术前准确诊断 | 3164名接受根治性手术的胃癌患者 | digital pathology | gastric cancer | CT成像 | ResNet101, XGBoost | CT图像 | 3164名胃癌患者 |