本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!
除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1141 | 2025-05-10 |
Predicting mother and newborn skin-to-skin contact using a machine learning approach
2025-Feb-18, BMC pregnancy and childbirth
IF:2.8Q1
DOI:10.1186/s12884-025-07313-9
PMID:39966775
|
研究论文 | 本研究利用机器学习方法预测母婴皮肤接触(SSC)的实施情况及其影响因素 | 首次采用多种机器学习模型(包括深度学习前馈网络和线性回归等)预测SSC,并识别出关键预测因素如导乐支持、新生儿体重等 | 需要更多研究来验证机器学习模型在预测SSC方面的性能 | 识别影响母婴皮肤接触(SSC)实施的关键因素 | 来自伊朗母婴网络(IMaN Net)的8031名符合条件的母亲及其新生儿 | 机器学习 | NA | 机器学习 | 线性回归, 逻辑回归, 决策树分类, 随机森林分类, 深度学习前馈, 极端梯度提升模型, 轻量梯度提升模型, 支持向量机, 排列特征分类与k近邻 | 医疗记录数据 | 8031名母亲(其中3759名经历了SSC) |
1142 | 2025-05-10 |
Integrating ultrasound radiomics and clinicopathological features for machine learning-based survival prediction in patients with nonmetastatic triple-negative breast cancer
2025-Feb-18, BMC cancer
IF:3.4Q2
DOI:10.1186/s12885-025-13635-w
PMID:39966783
|
研究论文 | 本研究评估了基于超声放射组学和临床病理特征的机器学习模型在三阴性乳腺癌患者生存分析中的预测价值 | 结合超声放射组学和临床病理特征构建的联合列线图在生存分析中表现出卓越性能,为三阴性乳腺癌患者提供了一种非侵入性的疾病结局分类方法 | 研究样本量相对有限,且需要外部验证进一步确认模型的泛化能力 | 评估机器学习模型在三阴性乳腺癌患者生存预测中的价值 | 非转移性三阴性乳腺癌患者 | 数字病理 | 乳腺癌 | 超声放射组学分析 | 机器学习模型 | 超声图像和临床数据 | 训练队列306例,内部验证队列77例,前瞻性外部验证队列82例 |
1143 | 2025-05-10 |
Development and validation of prediction models for stroke and myocardial infarction in type 2 diabetes based on health insurance claims: does machine learning outperform traditional regression approaches?
2025-Feb-18, Cardiovascular diabetology
IF:8.5Q1
DOI:10.1186/s12933-025-02640-9
PMID:39966813
|
研究论文 | 基于健康保险索赔数据开发和验证2型糖尿病患者中风和心肌梗死的预测模型,并比较传统回归方法与机器学习方法的预测性能 | 比较了传统回归方法与包括深度学习在内的先进机器学习方法在预测2型糖尿病患者中风和心肌梗死风险上的性能 | 由于文献中缺乏对其他相关指标(如AUPRC、敏感性和阳性预测值)的报告,比较这些指标的性能受到限制 | 开发和验证基于健康保险索赔数据的预测模型,用于预测2型糖尿病患者的中风和心肌梗死风险 | 2型糖尿病患者 | 机器学习 | 心血管疾病 | 逻辑回归、LASSO正则化、随机森林(RF)、梯度提升(GB)、多层感知器(MLP)和特征标记转换器(FTT) | 逻辑回归、RF、GB、MLP、FTT | 健康保险索赔数据 | 371,006名2型糖尿病患者 |
1144 | 2025-05-10 |
Deep learning-based automated guide for defining a standard imaging plane for developmental dysplasia of the hip screening using ultrasonography: a retrospective imaging analysis
2025-Feb-18, BMC medical informatics and decision making
IF:3.3Q2
DOI:10.1186/s12911-025-02926-8
PMID:39966904
|
research paper | 提出了一种基于深度学习的神经网络模型,用于在二维超声扫描中自动检测五个标志点,以开发用于发育性髋关节发育不良(DDH)筛查的标准平面 | 开发了一种结合全局和局部网络的模型,用于自动检测DDH筛查中的五个关键标志点,这在临床应用中具有创新性 | 研究仅基于单一医疗中心的回顾性数据,可能限制了模型的泛化能力 | 开发一种自动检测超声图像中五个标志点的深度学习模型,用于DDH筛查 | 接受髋关节超声检查以进行DDH筛查的患者 | digital pathology | developmental dysplasia of the hip | 2D ultrasonography | EfficientNetB2 | image | 532名患者 |
1145 | 2025-05-10 |
Deep learning-assisted screening and diagnosis of scoliosis: segmentation of bare-back images via an attention-enhanced convolutional neural network
2025-Feb-14, Journal of orthopaedic surgery and research
IF:2.8Q1
DOI:10.1186/s13018-025-05564-y
PMID:39953540
|
研究论文 | 开发了一种基于深度学习的图像分割模型,用于提高脊柱侧弯筛查的效率 | 在原始U-Net架构中加入了注意力机制,构建了Dual AttentionUNet模型用于图像分割 | 研究样本量相对较小,仅包含350名脊柱侧弯患者和108名健康受试者 | 提高脊柱侧弯筛查的效率和准确性 | 脊柱侧弯患者和健康受试者的裸背图像和站立全长前后位脊柱X光片 | 计算机视觉 | 脊柱侧弯 | 深度学习 | Dual AttentionUNet | 图像 | 350名脊柱侧弯患者和108名健康受试者 |
1146 | 2025-05-10 |
Machine Learning in the Management of Patients Undergoing Catheter Ablation for Atrial Fibrillation: Scoping Review
2025-Feb-10, Journal of medical Internet research
IF:5.8Q1
DOI:10.2196/60888
PMID:39928932
|
综述 | 本文通过范围综述评估了机器学习在心房颤动导管消融患者管理中的应用现状 | 系统比较了不同机器学习模型在特定临床任务中的表现,并总结了该领域的优势与局限性 | 大多数模型缺乏外部验证,存在高偏倚风险 | 评估机器学习在心房颤动导管消融患者管理中的应用证据 | 接受心房颤动导管消融治疗的患者 | 机器学习 | 心血管疾病 | 机器学习 | CNN | 人口统计学数据、临床特征、影像学数据、电生理信号 | 23项纳入研究 |
1147 | 2025-05-10 |
Renji endoscopic submucosal dissection video data set for early gastric cancer
2025-Feb-10, Scientific data
IF:5.8Q1
DOI:10.1038/s41597-025-04573-0
PMID:39929844
|
research paper | 介绍了一个用于早期胃癌治疗的Renji内镜黏膜下剥离术(ESD)视频数据集 | 这是首个公开可用的用于早期胃癌治疗的ESD数据集 | 数据集规模相对较小,仅包含20个ESD内镜视频 | 推动计算机辅助干预、手术学习和术后手术视频分析技术的发展 | 早期胃癌(EGC)的内镜黏膜下剥离术(ESD)视频 | computer vision | gastric cancer | deep learning | NA | video | 20个ESD内镜视频和66,656个阶段识别标注 |
1148 | 2025-05-10 |
Exploration of the optimal deep learning model for english-Japanese machine translation of medical device adverse event terminology
2025-Feb-08, BMC medical informatics and decision making
IF:3.3Q2
DOI:10.1186/s12911-025-02912-0
PMID:39923074
|
research paper | 本研究探索了英语-日语医疗设备不良事件术语机器翻译的最佳深度学习模型 | 比较了多种机器翻译模型在医疗术语翻译中的表现,发现GPT-4在定量和定性评估中均优于其他模型 | 研究仅基于50个随机抽取的句子,样本量较小 | 为自动术语映射系统寻找最佳的英语-日语医疗术语机器翻译模型 | 国际医疗器械监管机构论坛(IMDRF-AET)发布的英语-日语平行术语数据 | natural language processing | NA | 机器翻译 | mBART50, m2m-100, Google Translation, Multilingual T5, GPT-3, ChatGPT, GPT-4 | text | 50个随机抽取的术语及其定义句子 |
1149 | 2025-05-10 |
Complex conjugate removal in optical coherence tomography using phase aware generative adversarial network
2025-Feb, Journal of biomedical optics
IF:3.0Q2
DOI:10.1117/1.JBO.30.2.026001
PMID:39963188
|
research paper | 提出了一种基于生成对抗网络的深度学习方法来消除光学相干断层扫描中的复共轭伪影 | 利用相位图像增强深度学习模型去除复共轭伪影,无需额外硬件组件 | NA | 开发一种无需额外硬件的软件解决方案来消除FD-OCT中的复共轭伪影 | 光学相干断层扫描图像 | digital pathology | NA | 光学相干断层扫描 | GAN | image | 包括模型、人类皮肤和活体小鼠眼睛在内的多种样本 |
1150 | 2025-05-10 |
Arthroscopy-validated Diagnostic Performance of 7-Minute Five-Sequence Deep Learning Super-Resolution 3-T Shoulder MRI
2025-Feb, Radiology
IF:12.1Q1
DOI:10.1148/radiol.241351
PMID:39964264
|
research paper | 该研究验证了7分钟三倍并行成像加速的深度学习超分辨率3-T肩部MRI在诊断肩部病变中的临床效果 | 首次通过关节镜验证了深度学习超分辨率MRI在肩部病变诊断中的良好性能 | 样本量相对较小(121名成人),且为回顾性研究 | 验证加速深度学习MRI在肩部病变诊断中的临床效果 | 成人肩痛患者 | digital pathology | shoulder conditions | 深度学习超分辨率MRI | DL | MRI图像 | 121名成人(平均年龄55岁±14,75名男性) |
1151 | 2025-05-10 |
Association of Epicardial Adipose Tissue Changes on Serial Chest CT Scans with Mortality: Insights from the National Lung Screening Trial
2025-Feb, Radiology
IF:12.1Q1
DOI:10.1148/radiol.240473
PMID:39964263
|
research paper | 该研究探讨了心外膜脂肪组织(EAT)在两年间隔内的变化与接受连续低剂量CT肺癌筛查个体死亡率之间的关联 | 使用经过验证的自动深度学习算法从连续低剂量CT扫描中获取EAT体积和密度,并首次将EAT变化分为典型和非典型变化来预测死亡率 | 研究为二次分析,可能存在原始数据收集时的局限性 | 研究EAT变化与全因死亡率、心血管死亡率和肺癌死亡率之间的关联 | 接受连续低剂量CT肺癌筛查的个体 | digital pathology | lung cancer | low-dose CT | deep learning | CT image | 20661名参与者(平均年龄61.4岁±5.0,男性12237名[59.2%]) |
1152 | 2025-05-10 |
Change analysis of surface water clarity in the Persian Gulf and the Oman Sea by remote sensing data and an interpretable deep learning model
2025-Feb, Environmental science and pollution research international
DOI:10.1007/s11356-025-36018-x
PMID:39966320
|
研究论文 | 利用遥感数据和可解释深度学习模型分析波斯湾和阿曼海水体透明度的变化 | 结合MODIS-Aqua影像、统计测试和深度学习模型,首次全面监测波斯湾和阿曼海2002至2018年的水体透明度变化,并应用解释技术确定关键影响因素 | 研究时间跨度有限(2002-2018年),且仅基于MODIS-Aqua影像数据 | 监测波斯湾和阿曼海的水体透明度变化以评估生态系统健康状况和水质 | 波斯湾和阿曼海的水体透明度及相关环境参数 | 遥感与环境监测 | NA | MODIS-Aqua遥感影像、统计测试、深度学习模型 | CNN、LSTM | 遥感影像、环境参数数据 | 2002至2018年波斯湾和阿曼海的遥感监测数据 |
1153 | 2025-05-10 |
A practical deep learning model for core temperature prediction of specialized workers in high-temperature environments
2025-Feb, Journal of thermal biology
IF:2.9Q1
DOI:10.1016/j.jtherbio.2025.104079
PMID:39970650
|
研究论文 | 本文开发了一种结合卡尔曼滤波和长期序列预测深度学习模型的无创核心温度预测模型,用于高温环境下特种作业人员的健康监测 | 结合卡尔曼滤波和长期序列预测深度学习模型,利用皮肤温度和心率作为输入特征,实现个性化实时核心温度预测 | 实验样本量较小(13名参与者),且仅在34至40°C的环境温度范围内进行验证 | 解决高温环境下特种作业人员核心温度的实时监测和预测问题 | 高温环境下特种作业人员的核心温度 | 机器学习 | NA | 卡尔曼滤波和长期序列预测深度学习模型 | LSTM | 皮肤温度和心率数据 | 13名参与者的实验数据 |
1154 | 2025-05-10 |
Radiomics and Deep Learning Prediction of Immunotherapy-Induced Pneumonitis From Computed Tomography
2025-Feb, JCO clinical cancer informatics
IF:3.3Q2
DOI:10.1200/CCI-24-00198
PMID:39977708
|
研究论文 | 该研究利用放射组学和深度学习技术,通过计算机断层扫描(CT)预测免疫治疗引起的肺炎(PN) | 首次结合放射组学特征和深度学习模型(CNN)预测免疫治疗引起的肺炎,相比传统放射组学方法,深度学习模型表现出更高的预测性能 | 结合放射组学和深度学习的模型相比仅使用CNN的模型并未显示出显著改进 | 预测癌症患者在免疫检查点抑制剂(ICI)治疗期间可能发生的肺炎,以提高治疗安全性和有效性 | 接受ICI治疗的癌症患者 | 数字病理学 | 肺癌 | 计算机断层扫描(CT) | CNN | 图像 | 671名患者的2,700份胸部CT扫描数据 |
1155 | 2025-05-10 |
Quantifying Nuclear Structures of Digital Pathology Images Across Cancers Using Transport-Based Morphometry
2025-Feb, Cytometry. Part A : the journal of the International Society for Analytical Cytology
DOI:10.1002/cyto.a.24917
PMID:39982036
|
研究论文 | 本文介绍了一种基于最优传输数学的新技术,用于直接从成像数据中建模与核染色质结构相关的信息内容 | 提出了一种基于最优传输的形态测量(TBM)框架,能够表示每个细胞核相对于模板细胞核的整个信息内容,且对不同的染色模式和成像协议具有鲁棒性 | NA | 通过核形态学量化技术,提升核形态测量在癌症诊断和研究中的定量化水平 | 数字病理图像中的核结构,特别是来自癌症肿瘤的核图像 | 数字病理学 | 癌症 | 最优传输、特征提取、深度学习 | TBM框架 | 图像 | 涉及多种癌症组织类型,包括肝脏实质、甲状腺、肺间皮和皮肤上皮来源的肿瘤 |
1156 | 2025-05-10 |
A comprehensive review of deep learning-based approaches for drug-drug interaction prediction
2025-Jan-15, Briefings in functional genomics
IF:2.5Q3
DOI:10.1093/bfgp/elae052
PMID:39987494
|
review | 本文综述了基于深度学习的药物-药物相互作用(DDI)预测方法 | 提供了最新的、易于理解的DDI预测方法指南,包括基于相似性、网络和整合的方法,并对广泛使用的分子表示和从图数据中提取特征的模型理论框架进行了深入分析 | 未提及具体实验验证或实际应用效果的局限性 | 为不同领域的研究者提供关于DDI预测的全面指南 | 药物-药物相互作用(DDI) | machine learning | NA | deep learning | NA | graph data | NA |
1157 | 2025-05-10 |
Intelligent skin disease prediction system using transfer learning and explainable artificial intelligence
2025-01-11, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-024-83966-4
PMID:39799199
|
研究论文 | 提出了一种基于迁移学习和可解释人工智能的智能皮肤病预测系统 | 使用预训练的VGG16模型进行迁移学习,并结合层相关传播(LRP)技术提高模型的可解释性 | VGG16模型作为黑箱模型,无法解释系统运作的原因和方式 | 快速识别和预测皮肤病,如鸡痘、麻疹和猴痘 | 皮肤病的图像数据 | 计算机视觉 | 皮肤病 | 迁移学习(TL)和层相关传播(LRP) | VGG16 | 图像 | 包含鸡痘、麻疹、猴痘和正常皮肤四类图像的数据集 |
1158 | 2025-05-10 |
A benchmark of deep learning approaches to predict lung cancer risk using national lung screening trial cohort
2025-01-11, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-024-84193-7
PMID:39799226
|
research paper | 本文通过比较和分析当前最先进的深度学习模型,评估了它们在肺癌风险预测任务中的性能 | 首次全面比较和验证了多种3D和2D深度学习模型在肺癌风险预测中的表现,并探讨了预训练数据集对模型性能的影响 | 研究样本量有限(253名患者),且仅使用了无对比剂的CT扫描数据 | 评估深度学习模型在肺癌风险预测中的性能,为临床应用的模型选择提供依据 | 来自国家肺癌筛查试验(NLST)的253名患者的CT扫描数据 | digital pathology | lung cancer | CT扫描 | 3D和2D深度学习模型(如CNN等) | image | 253名患者的CT扫描数据 |
1159 | 2025-05-10 |
Deep learning algorithms enable MRI-based scapular morphology analysis with values comparable to CT-based assessments
2025-01-10, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-024-84107-7
PMID:39794358
|
研究论文 | 本研究提出了一种基于深度学习的MRI肩胛骨形态分析方法,其准确性可与CT评估相媲美 | 利用深度学习技术从各向异性分辨率和有限视野的MRI中自动进行肩胛骨形态分析,克服了传统MRI方法的误差问题 | 虽然准确性接近CT,但仍存在微小偏差,且样本量和多样性未明确说明 | 开发一种无需CT即可准确评估肩胛骨形态的方法 | 肩胛骨的形态特征 | 数字病理学 | 肩袖修复术后再撕裂 | MRI和CT成像 | 深度学习分割网络 | 医学影像 | NA |
1160 | 2025-05-10 |
A hybrid explainable model based on advanced machine learning and deep learning models for classifying brain tumors using MRI images
2025-01-10, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-025-85874-7
PMID:39794374
|
research paper | 提出了一种结合轻量级并行深度可分离卷积神经网络(PDSCNN)和混合岭回归极限学习机(RRELM)的新方法,用于基于MRI图像准确分类四种脑肿瘤 | 结合PDSCNN和RRELM,采用CLAHE增强MRI图像中肿瘤特征的可见性和清晰度,并通过SHAP提高模型的可解释性 | 未提及具体的数据集来源和样本多样性,可能影响模型的泛化能力 | 提高脑肿瘤的早期检测和准确分类,以支持有效的治疗策略 | 四种脑肿瘤(胶质瘤、脑膜瘤、无肿瘤和垂体瘤)的MRI图像 | digital pathology | brain tumor | MRI, CLAHE, SHAP | PDSCNN, RRELM | image | 未提及具体样本数量 |