深度学习在生物医药领域中的应用

本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!

如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!

Sample Image
添加微信请说明来意
Sample Image
微信赞赏

除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。

当前筛选条件: [分区不过滤] [IF不过滤] [发表日期不过滤] [清除筛选条件]
当前共找到 23937 篇文献,本页显示第 11581 - 11600 篇。
序号 推送日期 文章 类型 简述 创新点 不足 研究目的 研究对象 领域 病种 技术 模型 数据类型 样本量
11581 2024-11-21
A Modified Transformer Network for Seizure Detection Using EEG Signals
2024-Nov-19, International journal of neural systems IF:6.6Q1
研究论文 本文提出了一种改进的Transformer网络用于癫痫发作检测,结合了Inception和Residual网络提取不同尺度的脑电图(EEG)信号特征,并通过Co-MixUp方法处理数据不平衡问题 本文提出的Inresformer网络结合了Inception和Residual网络,增强了特征表示能力,并通过改进的Feedforward层增强了模型的非线性表示 NA 提高癫痫发作检测的准确性和性能 脑电图(EEG)信号 机器学习 NA 离散小波变换(DWT) Transformer网络 信号 Bonn数据集和CHB-MIT数据集
11582 2024-11-21
Discovery of Active Ingredient of Yinchenhao Decoction Targeting TLR4 for Hepatic Inflammatory Diseases Based on Deep Learning Approach
2024-Nov-19, Interdisciplinary sciences, computational life sciences
研究论文 本研究提出了一种基于深度学习的AIGO-DTI框架,用于预测Yinchenhao Decoction中主要成分对TLR4的靶向概率,并验证了其对肝病的治疗潜力 首次使用AIGO-DTI深度学习框架预测Yinchenhao Decoction中成分对TLR4的靶向概率,并建立了TLR4-Predict在线平台 NA 探索Yinchenhao Decoction中有效成分及其对TLR4的靶向治疗机制,以治疗肝病 Yinchenhao Decoction中的主要成分及其对TLR4的靶向作用 机器学习 肝病 深度学习 AIGO-DTI 化合物 NA
11583 2024-11-21
Quantitative and Morphology-Based Deep Convolutional Neural Network Approaches for Osteosarcoma Survival Prediction in the Neoadjuvant and Metastatic Setting
2024-Nov-19, Clinical cancer research : an official journal of the American Association for Cancer Research IF:10.0Q1
研究论文 本文探讨了三种深度学习策略在组织学样本上预测新辅助和转移性骨肉瘤生存结果的应用 本文创新性地使用深度卷积神经网络自动估计坏死与肿瘤的比例,并识别出特定的组织形态学生物标志物 NA 探索深度学习策略在新辅助和转移性骨肉瘤生存预测中的应用 骨肉瘤患者的组织学样本 数字病理学 骨癌 深度学习 深度卷积神经网络 图像 训练集来自纽约大学,外部验证集来自查尔斯大学
11584 2024-11-21
Automated Single Cell Phenotyping of Time-of-Flight Secondary Ion Mass Spectrometry Tissue Images
2024-Nov-19, Journal of the American Society for Mass Spectrometry IF:3.1Q1
研究论文 本文介绍了使用深度学习技术对时间飞行二次离子质谱组织图像进行自动单细胞表型分析的方法 开发了MIBIsight工作流程,利用深度学习技术处理包含数千个细胞的图像,生成易于理解的报告和图表 NA 旨在通过深度学习技术简化复杂数据集的分析,以便更好地理解细胞在疾病研究中的作用 时间飞行二次离子质谱组织图像中的单细胞表型 计算机视觉 NA 时间飞行二次离子质谱(ToF-SIMS) 深度学习(DL) 图像 数千个细胞
11585 2024-11-21
Exploring protein natural diversity in environmental microbiomes with DeepMetagenome
2024-Nov-18, Cell reports methods IF:4.3Q2
研究论文 本文介绍了一种基于深度学习的Python方法DeepMetagenome,用于探索环境微生物群中的蛋白质自然多样性 DeepMetagenome通过深度学习模型从宏基因组/蛋白质组中检测蛋白质多样性,无需先验假设,并成功识别了高置信度的金属硫蛋白序列 NA 探索环境微生物群中的蛋白质自然多样性 金属硫蛋白及其他三种蛋白质家族的多样性 机器学习 NA 深度学习 CNN, LSTM, Transformer 序列数据 超过14600万编码特征的数据库
11586 2024-11-21
Uncovering the predictive and immunomodulatory potential of transient receptor potential melastatin family-related CCNE1 in pan-cancer
2024-Nov-18, Molecular cancer IF:27.7Q1
研究论文 研究探讨了TRPM家族成员CCNE1在泛癌中的预测和免疫调节潜力 首次创建了TRPM家族成员相关的TRPM-Score,并发现CCNE1作为泛癌中的重要生物标志物 NA 探索新的分子生物标志物以改进癌症治疗和早期检测 TRPM家族成员及其在17种实体瘤中的作用 数字病理学 泛癌 机器学习和深度学习计算技术 NA NA 17种实体瘤样本
11587 2024-11-17
Correction: Multiparametric MRI based deep learning model for prediction of early recurrence of hepatocellular carcinoma after SR following TACE
2024-Nov-16, Journal of cancer research and clinical oncology IF:2.7Q3
NA NA NA NA NA NA NA NA NA NA NA NA
11588 2024-11-21
Wind power prediction based on deep learning models: The case of Adama wind farm
2024-Nov-15, Heliyon IF:3.4Q1
研究论文 本文研究了基于深度学习模型的风力发电预测,以埃塞俄比亚的阿达玛风电场为例 本文首次为阿达玛风电场开发了基于深度学习的风力发电预测模型,并比较了LSTM、Bi-LSTM和GRU三种模型的性能 本文仅使用了阿达玛风电场的数据,未考虑其他风电场的数据,可能影响模型的泛化能力 开发一种准确可靠的风力发电预测模型,以帮助能源规划者和区域电力供应商计算电力生产和能源生成 阿达玛风电场的风力发电量 机器学习 NA 深度学习 LSTM, Bi-LSTM, GRU 时间序列数据 四年数据,共163,802行,每5分钟记录一次
11589 2024-11-21
dsRNAPredictor-II: An improved predictor of identifying dsRNA and its silencing efficiency for Tribolium castaneum based on sequence length distribution
2024-Nov-09, Methods (San Diego, Calif.)
研究论文 本文通过优化现有模型dsRNAPredictor,设计基于不同序列长度的子模型,建立了一个深度学习模型来预测dsRNA的沉默效率 本文通过设计基于不同序列长度的子模型,优化了现有模型dsRNAPredictor,提高了预测dsRNA沉默效率的性能和鲁棒性 NA 建立一个深度学习模型,帮助研究人员识别具有最高RNAi效率的dsRNA片段 dsRNA的序列长度分布及其沉默效率 机器学习 NA NA 卷积神经网络 序列 数据分为两组:130-399 bp和400-616 bp长的序列
11590 2024-11-21
Artificial Intelligence and the Future of Communication Sciences and Disorders: A Bibliometric and Visualization Analysis
2024-Nov-07, Journal of speech, language, and hearing research : JSLHR
研究论文 本文通过文献计量学分析和可视化方法,全面概述了人工智能在沟通科学与障碍研究中的应用 本文首次系统性地分析了人工智能在沟通科学与障碍领域的研究趋势和热点,揭示了该领域应用AI的现状和未来发展方向 本文主要依赖于文献计量学方法,可能无法全面反映所有相关研究的细节和深度 旨在为研究人员、开发者和专业人士提供一个全面的概述,帮助理解AI在沟通科学与障碍研究中的演变 主要研究了自闭症、失语症、构音障碍、帕金森病和阿尔茨海默病等沟通障碍 机器学习 NA 文献计量学分析 支持向量机、卷积神经网络、隐马尔可夫模型 文献数据 15,035篇出版物,其中4,375篇符合纳入标准
11591 2024-10-15
Deciphering protective genomic factors of tumor development in pediatric Down syndrome via deep learning approach to whole genome and RNA sequencing
2024-Nov, Cancer communications (London, England)
NA NA NA NA NA NA NA NA NA NA NA NA
11592 2024-11-21
Accelerating Brain MR Imaging With Multisequence and Convolutional Neural Networks
2024-Nov, Brain and behavior IF:2.6Q3
研究论文 研究使用深度学习技术加速脑部MRI成像过程,通过多序列和卷积神经网络重建图像,同时保持图像质量 利用深度学习技术从不同MRI序列中提取共同信息,减少最耗时的序列扫描时间,同时保持图像质量 研究仅限于T1-FLAIR、T2-FLAIR和T2WI序列,未涵盖所有可能的MRI序列 探讨深度学习技术是否能通过利用不同MRI序列的共同信息来减少扫描时间并保持图像质量 脑部MRI图像,包括T1-FLAIR、T2-FLAIR和T2WI序列 计算机视觉 NA 深度学习 卷积神经网络 图像 217名患者和105名健康受试者的脑部MRI原始数据
11593 2024-11-21
Deep learning model for automated diagnosis of moyamoya disease based on magnetic resonance angiography
2024-Nov, EClinicalMedicine IF:9.6Q1
研究论文 本研究探讨了基于深度学习的卷积神经网络(CNN)在磁共振血管造影(MRA)图像上自动识别烟雾病(MMD)的潜力 本研究首次使用DenseNet-121模型在MRA图像上实现了MMD的自动诊断,并展示了其与经验丰富的放射科医生相当的诊断能力 本研究为回顾性研究,样本主要来自中国的一个机构,外部验证集较小,可能影响模型的泛化能力 探索基于深度学习的卷积神经网络在MRA图像上自动诊断烟雾病的可能性 烟雾病(MMD)、动脉粥样硬化疾病(ASD)和正常对照(NC)的MRA图像 计算机视觉 脑血管疾病 卷积神经网络(CNN) DenseNet-121 图像 600名参与者(200名MMD、200名ASD和200名NC)用于训练,60名参与者用于外部验证
11594 2024-11-21
Deep Learning Algorithms for Breast Cancer Detection in a UK Screening Cohort: As Stand-alone Readers and Combined with Human Readers
2024-Nov, Radiology IF:12.1Q1
研究论文 本文研究了三种深度学习算法在英国乳腺癌筛查队列中的表现,评估了它们作为独立读片者和与人类读片者结合使用时的性能 本文的创新点在于验证了三种深度学习算法在独立使用和与人类读片者结合使用时的非劣效性,特别是在敏感性和特异性方面 本文的局限性在于仅在两个英国站点收集的数据上进行了验证,且仅使用了两种设备供应商的机器 本文的研究目的是在外部独立数据集中验证三种深度学习算法作为乳腺X线筛查读片者的性能 本文的研究对象是三种商业深度学习算法(DL-1, DL-2, DL-3)在乳腺癌筛查中的应用 计算机视觉 乳腺癌 深度学习 深度学习算法 图像 共26,722例病例,包括332例筛查发现、174例间隔期和254例下一轮癌症
11595 2024-11-21
Anatomic Interpretability in Neuroimage Deep Learning: Saliency Approaches for Typical Aging and Traumatic Brain Injury
2024-Oct-16, Research square
研究论文 本研究比较了七种基于归因的显著性方法,用于增强深度神经网络(DNN)在估计生物脑龄(BA)时的解剖学解释性 本研究首次系统比较了多种显著性方法在典型衰老和创伤性脑损伤(TBI)情况下的表现,并评估了它们在捕捉已知脑衰老解剖特征方面的能力 研究仅限于使用磁共振成像(MRI)数据,且样本量相对较小 探讨不同显著性方法在增强深度神经网络(DNN)解剖学解释性方面的效果 认知正常(CN)成年人和轻度创伤性脑损伤(mTBI)成年人的脑龄估计 计算机视觉 创伤性脑损伤 磁共振成像(MRI) 深度神经网络(DNN) 图像 认知正常成年人100名(男性),平均年龄65.82 ± 8.89岁;轻度创伤性脑损伤成年人100名(男性),平均年龄55.3 ± 9.9岁
11596 2024-11-21
Deep learning permits imaging of multiple structures with the same fluorophores
2024-10-15, Biophysical journal IF:3.2Q2
研究论文 提出了一种新的双结构网络(DBSN),可以从三个原始图像中提取六个不同的亚细胞结构,仅使用两种荧光标记 DBSN结合了强度平衡模型和结构分离模型,能够从相同的荧光标记中提取多个不同的亚细胞结构,突破了现有技术的瓶颈 NA 开发一种能够同时成像多个结构的新方法,减少荧光显微镜的时间消耗 亚细胞结构 计算机视觉 NA 深度学习 双结构网络(DBSN) 图像 三个原始图像
11597 2024-11-21
Evaluation of deep learning-based target auto-segmentation for Magnetic Resonance Imaging-guided cervix brachytherapy
2024-Oct, Physics and imaging in radiation oncology
研究论文 评估深度学习在磁共振成像引导的宫颈近距离放射治疗中自动分割目标结构的应用 提出使用基于人群和患者特异性自动分割作为第二部分目标分割的起点,以减少手动分割的时间和患者负担 自动分割引入了手动描绘的偏差,但这种偏差在临床上无关紧要 评估使用自动分割作为第二部分目标分割起点的临床影响 宫颈癌患者在磁共振成像引导下的近距离放射治疗 计算机视觉 宫颈癌 深度学习 NA 图像 28名局部晚期宫颈癌患者
11598 2024-11-21
Evaluation of three-point correlation functions from structural images on CPU and GPU architectures: Accounting for anisotropy effects
2024-Oct, Physical review. E
研究论文 本文开发了在CPU和GPU架构上计算三点点相关函数的算法和代码,考虑了各向异性效应 本文提出了计算三点点相关函数的新算法,并展示了其在任意三角形模式下的计算速度与直角三角形模式相当 本文指出,当计算在频率域进行时,数据量会变得非常大,且目前尚不清楚n>3的点相关函数的优势 研究三点点相关函数在结构图像分析中的应用,并评估其在不同架构上的计算效率 三点点相关函数及其在结构图像分析中的应用 计算机视觉 NA 三点点相关函数计算 NA 图像 NA
11599 2024-11-21
Artificial Intelligence Measurement of Preoperative Radiographs in Adolescent Idiopathic Scoliosis Based on Multiple-View Semantic Segmentation
2024-Aug-07, Global spine journal IF:2.6Q1
研究论文 研究基于多视角语义分割的人工智能在青少年特发性脊柱侧弯术前影像测量中的应用 本研究首次使用深度学习方法自动分类青少年特发性脊柱侧弯,并与手动分类进行一致性验证 研究样本量有限,且仅限于青少年特发性脊柱侧弯病例 探索深度学习在青少年特发性脊柱侧弯影像分类中的应用,验证其与手动分类的一致性 青少年特发性脊柱侧弯的术前影像 计算机视觉 脊柱侧弯 U-Net语义分割神经网络技术 U-Net 影像 506例训练样本,107例测试样本
11600 2024-11-21
Evaluation of deep-learning TSE images in clinical musculoskeletal imaging
2024-Aug, Journal of medical imaging and radiation oncology IF:2.2Q2
研究论文 本研究比较了传统重建的脂肪饱和(FS)和非FS涡轮自旋回波(TSE)磁共振成像与基于深度学习的加速TSE(DL-TSE)重建在膝关节成像中的效果 DL-TSE重建在提高图像分辨率和缩短扫描时间的同时,保持了图像对比度,且在大多数情况下被放射科医生认为具有更好的小结构显示效果 DL-TSE在21/232(9%)的病例中被认为效果不如传统TSE 评估基于深度学习的TSE图像在临床肌肉骨骼成像中的应用效果 脂肪饱和和非脂肪饱和的TSE磁共振成像与基于深度学习的TSE重建图像 计算机视觉 NA 磁共振成像 深度学习 图像 232对传统TSE和DL-TSE图像
回到顶部