本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!
除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
11601 | 2024-12-12 |
A review of the applications of generative adversarial networks to structural and functional MRI based diagnostic classification of brain disorders
2024, Frontiers in neuroscience
IF:3.2Q2
DOI:10.3389/fnins.2024.1333712
PMID:38686334
|
综述 | 本文综述了生成对抗网络(GAN)在基于结构和功能磁共振成像(MRI)的脑部疾病诊断分类中的应用 | GAN通过学习数据分布来增强数据,为解决神经影像数据稀缺和不平衡问题提供了潜在解决方案 | 本文指出了方法学和可解释性方面的不足,并提出了未来研究的方向 | 探讨GAN在神经影像数据分类中的应用,并提出未来研究的方向 | 基于结构和功能MRI的脑部疾病诊断分类 | 机器学习 | NA | 生成对抗网络(GAN) | 生成对抗网络(GAN) | 图像 | NA |
11602 | 2024-12-12 |
Prognosis Forecast of Re-Irradiation for Recurrent Nasopharyngeal Carcinoma Based on Deep Learning Multi-Modal Information Fusion
2023-12, IEEE journal of biomedical and health informatics
IF:6.7Q1
DOI:10.1109/JBHI.2023.3286656
PMID:37384472
|
研究论文 | 本研究利用深度学习多模态信息融合技术,预测复发性鼻咽癌再放疗后的鼻咽坏死情况 | 提出了一种基于多模态信息融合的深度学习方法,通过监督分类损失和自监督重建损失的结合,有效融合了多序列核磁共振成像和计划剂量的信息 | 未提及具体的研究局限性 | 通过预测鼻咽坏死情况,为临床决策提供支持,减少再放疗引起的并发症 | 复发性鼻咽癌患者再放疗后的鼻咽坏死情况 | 机器学习 | 鼻咽癌 | 深度学习 | NA | 图像 | 多中心数据集 |
11603 | 2024-12-12 |
Self-Supervised Triplet Contrastive Learning for Classifying Endometrial Histopathological Images
2023-12, IEEE journal of biomedical and health informatics
IF:6.7Q1
DOI:10.1109/JBHI.2023.3314663
PMID:37698968
|
研究论文 | 本文提出了一种新的自监督三重对比学习模型,用于分类子宫内膜组织病理学图像 | 本文创新性地引入了随机马赛克掩码(RMM)模块和瓶颈Transformer(BoT)模型,以增强模型的泛化能力和全局信息学习能力 | 本文未详细讨论模型在不同数据分布下的泛化能力以及对标注数据依赖的具体程度 | 开发一种能够有效分类子宫内膜组织病理学图像的自监督学习模型,以辅助病理学家进行早期子宫内膜癌或癌前病变的诊断 | 子宫内膜组织病理学图像 | 数字病理学 | 子宫内膜癌 | 自监督学习 | 三重对比学习模型 | 图像 | 公共数据集和内部数据集,分别用于四分类和三分类任务 |
11604 | 2024-12-12 |
Fusion-Based Deep Learning Architecture for Detecting Drug-Target Binding Affinity Using Target and Drug Sequence and Structure
2023-12, IEEE journal of biomedical and health informatics
IF:6.7Q1
DOI:10.1109/JBHI.2023.3315073
PMID:37703165
|
研究论文 | 本文提出了一种基于多尺度卷积神经网络和图神经网络的融合协议CGraphDTA,用于预测药物-靶点结合亲和力 | CGraphDTA是首个将靶点序列和结构作为输入的模型,利用多尺度卷积神经网络从序列中提取特征,图神经网络从分子结构中提取图表示 | NA | 加速药物发现 | 药物-靶点结合亲和力的预测 | 机器学习 | NA | 多尺度卷积神经网络,图神经网络 | CNN,GNN | 序列,结构 | NA |
11605 | 2024-12-12 |
MFD-Net: Modality Fusion Diffractive Network for Segmentation of Multimodal Brain Tumor Image
2023-12, IEEE journal of biomedical and health informatics
IF:6.7Q1
DOI:10.1109/JBHI.2023.3318640
PMID:37747864
|
研究论文 | 本文提出了一种用于多模态脑肿瘤图像分割的模态融合衍射网络(MFD-Net) | 设计了基于夫琅禾费单缝衍射原理的衍射块,强调邻近的高置信度特征点并抑制低质量或孤立的特征点,增强了特征的相互关联性;采用全局被动接收模式克服了固定感受野的问题;通过自监督方法有效利用每种模态的固有泛化信息 | 未提及具体限制 | 实现脑肿瘤的自动和准确分割 | 多模态脑肿瘤图像 | 计算机视觉 | 脑肿瘤 | 多参数磁共振成像(mpMRI) | MFD-Net | 图像 | 使用了BraTS 2022、2018、2019和2021数据集 |
11606 | 2024-12-12 |
Large AI Models in Health Informatics: Applications, Challenges, and the Future
2023-12, IEEE journal of biomedical and health informatics
IF:6.7Q1
DOI:10.1109/JBHI.2023.3316750
PMID:37738186
|
综述 | 本文全面回顾了大型AI模型在健康信息学中的应用、挑战及未来发展方向 | 探讨了大型AI模型在健康信息学中的七个关键应用领域,并提出了未来发展的潜在方向 | 未具体讨论大型AI模型在健康信息学中的具体技术细节和实际应用案例 | 探讨大型AI模型在健康信息学中的应用、挑战及未来发展方向 | 大型AI模型在健康信息学中的应用领域及未来发展方向 | 健康信息学 | NA | NA | 大型AI模型 | 多模态数据 | NA |
11607 | 2024-12-12 |
Deeply Accelerated Arterial Spin Labeling Perfusion MRI for Measuring Cerebral Blood Flow and Arterial Transit Time
2023-12, IEEE journal of biomedical and health informatics
IF:6.7Q1
DOI:10.1109/JBHI.2023.3312662
PMID:37812536
|
研究论文 | 本文提出了一种基于深度学习的算法,用于减少动脉自旋标记(ASL)灌注MRI中的后标记延迟(PLD)数量,并准确估计脑血流量(CBF)和动脉转运时间(ATT) | 本文的创新点在于使用深度学习算法减少了所需的PLD数量,并能够准确估计CBF和ATT,解决了传统方法中扫描时间过长和信噪比降低的问题 | 本文的局限性在于仅在Human Connectome Project数据集上进行了训练和测试,可能需要进一步验证其在其他数据集上的泛化能力 | 研究目的是开发一种能够在临床上实用的方法,通过减少PLD数量来准确测量脑血流量和动脉转运时间 | 研究对象是脑血流量(CBF)和动脉转运时间(ATT)的测量 | 医学影像 | NA | 动脉自旋标记(ASL)灌注MRI | 深度神经网络 | 图像 | 使用了Human Connectome Project中的多PLD ASL MRI数据集 |
11608 | 2024-12-12 |
Patterns of subregional cerebellar atrophy across epilepsy syndromes: An ENIGMA-Epilepsy study
2023-Oct-23, bioRxiv : the preprint server for biology
DOI:10.1101/2023.10.21.562994
PMID:37961570
|
研究论文 | 研究量化了癫痫患者和健康对照组中不同小脑亚区域体积的差异 | 首次系统性地研究了不同癫痫综合征中小脑亚区域的萎缩模式,并提供了深部小脑和后叶灰质体积损失的证据 | 研究仅基于横断面数据,未考虑纵向变化 | 探讨不同癫痫综合征中小脑亚区域的萎缩模式及其与疾病特征的关系 | 癫痫患者和健康对照组的小脑亚区域体积 | 神经科学 | 癫痫 | 结构MRI | 深度学习 | 图像 | 1602名癫痫患者和1022名健康对照组 |
11609 | 2024-12-12 |
Systematic review of deep learning image analyses for the diagnosis and monitoring of skin disease
2023-Sep-27, NPJ digital medicine
IF:12.4Q1
DOI:10.1038/s41746-023-00914-8
PMID:37758829
|
综述 | 本文系统回顾了使用深度学习图像分析技术进行皮肤病诊断和监测的研究 | 本文首次系统性地评估了深度学习算法在多种常见皮肤病诊断和严重程度评估中的应用 | 当前研究存在高偏倚风险和适用性问题,且大多数研究未报告参与者的种族/皮肤类型,缺乏真实世界的外部验证 | 评估深度学习图像分析技术在皮肤病诊断和监测中的潜力 | 常见皮肤病,如痤疮、银屑病、湿疹、酒渣鼻、白癜风、荨麻疹 | 计算机视觉 | 皮肤病 | 深度学习 | 神经网络 | 图像 | 64项研究,涉及多种皮肤病 |
11610 | 2024-12-12 |
Functional connectivity signatures of major depressive disorder: machine learning analysis of two multicenter neuroimaging studies
2023-Jul, Molecular psychiatry
IF:9.6Q1
DOI:10.1038/s41380-023-01977-5
PMID:36792654
|
研究论文 | 本文利用机器学习和深度学习算法,分析了两个多中心神经影像数据集,以区分重度抑郁症患者与健康对照组,并识别抑郁症的神经生理学特征 | 本文首次在两个最大的重度抑郁症静息态数据集中应用了图卷积神经网络(GCN)和GCN-Explainer进行特征可视化,揭示了丘脑超连接性作为抑郁症的显著神经生理学特征 | 分类准确率较低,表明静息态功能连接作为重度抑郁症的生物标志物可靠性较差,可能是由于疾病的异质性 | 开发用于精神病学的诊断工具,并识别重度抑郁症的神经生理学特征 | 重度抑郁症患者与健康对照组的静息态功能连接 | 机器学习 | 精神疾病 | 功能磁共振成像(fMRI) | 支持向量机(SVM)和图卷积神经网络(GCN) | 功能连接矩阵 | REST-meta-MDD数据集2338例,PsyMRI数据集1039例 |
11611 | 2024-12-12 |
Geometric Deep Learning for Unsupervised Registration of Diffusion Magnetic Resonance Images
2023-Jun, Information processing in medical imaging : proceedings of the ... conference
DOI:10.1007/978-3-031-34048-2_43
PMID:38205236
|
研究论文 | 本文提出了首个端到端的基于几何深度学习的非刚性配准模型,用于扩散磁共振图像(dMRI)中的纤维方向分布场(fODF) | 首次提出了一种基于几何深度学习的非刚性配准模型,能够对扩散MRI中的fODF进行无监督配准,并引入了新的可微分层用于局部雅可比估计和重定向 | NA | 开发一种快速且准确的非刚性配准算法,用于扩散磁共振图像 | 扩散磁共振图像中的纤维方向分布场(fODF) | 计算机视觉 | NA | 扩散磁共振成像(dMRI) | 几何深度学习模型 | 图像 | NA |
11612 | 2024-12-12 |
Interpretable brain disease classification and relevance-guided deep learning
2022-11-24, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-022-24541-7
PMID:36424437
|
研究论文 | 本文提出了一种利用相关性引导的热图在线计算的正则化技术,用于训练卷积神经网络(CNN)分类器,以提高脑疾病分类的可解释性和准确性 | 本文的创新点在于提出了一种相关性引导的正则化技术,通过在线计算热图来训练CNN分类器,从而提高分类准确性并减少对非脑组织特征的依赖 | 本文的局限性在于仅使用了T1加权MR图像,未探讨其他类型图像对分类结果的影响 | 研究目的是提高基于MRI的神经疾病分类的可解释性和准确性 | 研究对象是阿尔茨海默病患者和健康对照者的T1加权MR图像 | 机器学习 | 阿尔茨海默病 | MRI | CNN | 图像 | 128名阿尔茨海默病患者和290名健康对照者 |
11613 | 2024-12-12 |
AVT: Multicenter aortic vessel tree CTA dataset collection with ground truth segmentation masks
2022-Feb, Data in brief
IF:1.0Q3
DOI:10.1016/j.dib.2022.107801
PMID:35059483
|
研究论文 | 本文介绍了一个多中心主动脉血管树数据库,包含56个主动脉及其分支的CTA扫描数据和相应的半自动分割掩码 | 首次提供了多中心主动脉血管树的CTA数据集,并附带半自动生成的分割掩码,有助于研究不同地理位置的主动脉及其分支的几何形状变异性 | NA | 构建一个稳健的统计模型,用于开发全自动的主动脉血管树分割算法 | 主动脉及其分支的几何形状和变异性 | 计算机视觉 | NA | CTA扫描 | 深度学习 | 图像 | 56个主动脉及其分支 |
11614 | 2024-12-12 |
Convolutional Neural Networks for Fully Automated Diagnosis of Cardiac Amyloidosis by Cardiac Magnetic Resonance Imaging
2021-Dec-01, Journal of personalized medicine
IF:3.0Q1
DOI:10.3390/jpm11121268
PMID:34945740
|
研究论文 | 本文研究了使用卷积神经网络(CNN)通过心脏磁共振成像(CMR)自动诊断心脏淀粉样变性(CA) | 本文首次使用人工智能(AI)驱动的算法通过CMR图像检测心脏淀粉样变性的潜在模式 | 本文的局限性在于仅使用了502名患者的数据进行训练和验证 | 本文的研究目的是探索通过AI技术提高心脏淀粉样变性的诊断准确性 | 本文的研究对象是心脏淀粉样变性患者的心脏磁共振成像数据 | 计算机视觉 | 心血管疾病 | 卷积神经网络(CNN) | 卷积神经网络(CNN) | 图像 | 502名患者(其中82名患有心脏淀粉样变性) |
11615 | 2024-12-12 |
Smartphone-based DNA malaria diagnostics using deep learning for local decision support and blockchain technology for security
2021-Aug-02, Nature electronics
IF:33.7Q1
DOI:10.1038/s41928-021-00612-x
PMID:39651407
|
研究论文 | 本文介绍了一种基于智能手机的端到端平台,用于多重DNA疟疾诊断,结合了深度学习算法和区块链技术 | 创新点在于将低成本的纸基微流体诊断测试与深度学习算法和区块链技术相结合,实现了远程低资源地区的快速诊断和数据安全管理 | NA | 开发一种能够在远程低资源地区快速进行疟疾诊断并确保数据安全的平台 | 疟疾诊断 | 数字病理学 | 疟疾 | 深度学习算法,区块链技术 | 深度学习 | DNA | 在乌干达农村地区进行了实地测试,正确识别了超过98%的测试病例 |
11616 | 2024-12-12 |
On the objectivity, reliability, and validity of deep learning enabled bioimage analyses
2020-10-19, eLife
IF:6.4Q1
DOI:10.7554/eLife.59780
PMID:33074102
|
研究论文 | 本文探讨了深度学习在生物图像分析中的客观性、可靠性和有效性 | 提出了一种集成数据标注、真实值估计和模型训练的分析流程,以提高深度学习模型在生物图像分析中的客观性、可靠性和有效性 | 本文主要基于小鼠和斑马鱼的数据进行研究,可能无法完全推广到其他生物或实验条件 | 评估集成数据标注、真实值估计和模型训练的深度学习分析流程的有效性 | 小鼠和斑马鱼的荧光标记图像 | 计算机视觉 | NA | 深度学习 | 深度学习模型(未具体说明模型类型) | 图像 | 来自两个模式生物(小鼠、斑马鱼)和五个实验室的数据 |
11617 | 2024-12-12 |
Industry-scale application and evaluation of deep learning for drug target prediction
2020-Apr-19, Journal of cheminformatics
IF:7.1Q1
DOI:10.1186/s13321-020-00428-5
PMID:33430964
|
研究论文 | 本文研究了基于公共数据训练的机器学习模型在制药行业数据上的应用和评估 | 首次在大规模行业环境中评估机器学习和深度学习在药物靶点预测中的潜力,并研究了公共数据训练的靶点预测模型在工业生物活性预测管道中的可转移性 | NA | 评估机器学习模型在制药行业数据上的应用效果 | 基于公共数据训练的机器学习模型在制药行业数据上的应用 | 机器学习 | NA | 深度学习 | 深度学习模型 | 数据 | NA |
11618 | 2024-12-11 |
Enhancing forensic blood detection using hyperspectral imaging and advanced preprocessing techniques
2025-Feb-01, Talanta
IF:5.6Q1
DOI:10.1016/j.talanta.2024.127097
PMID:39454346
|
研究论文 | 本研究探讨了使用高光谱成像(HSI)和先进预处理技术来增强法医血液检测的方法 | 引入了名为Fast Extraction(FE)框架的新方法,包括Enhancing Transformation Reduction(ETR)方法和兼容的分类模型,显著提高了血液检测的准确性和效率 | 未提及具体局限性 | 提高法医血液检测的准确性和效率 | 血液检测中的高光谱成像数据 | 计算机视觉 | NA | 高光谱成像(HSI) | 分类模型 | 图像 | 使用HyperBlood数据集进行验证 |
11619 | 2024-12-11 |
Small-data-trained model for predicting nitrate accumulation in one-stage partial nitritation-anammox processes controlled by oxygen supply rate
2025-Feb-01, Water research
IF:11.4Q1
DOI:10.1016/j.watres.2024.122798
PMID:39581117
|
研究论文 | 本研究提出了一种基于氧气供应率控制硝酸盐积累的新策略,并通过实验和深度学习模型验证了其有效性 | 提出了基于氧气供应率控制硝酸盐积累的新策略,并开发了一种结合门控循环单元和多层感知器的深度学习模型来预测硝酸盐积累 | 实验规模为实验室级别,可能需要进一步验证其在实际污水处理中的应用效果 | 研究如何通过控制氧气供应率来有效防止部分硝化-厌氧氨氧化过程中硝酸盐的积累 | 部分硝化-厌氧氨氧化过程中的硝酸盐积累 | 环境工程 | NA | 深度学习 | 门控循环单元和多层感知器 | 实验数据 | 一个实验室规模的单级部分硝化-厌氧氨氧化系统,持续运行135天,分为五个阶段 |
11620 | 2024-12-11 |
Stress recognition identifying relevant facial action units through explainable artificial intelligence and machine learning
2025-Feb, Computer methods and programs in biomedicine
IF:4.9Q1
DOI:10.1016/j.cmpb.2024.108507
PMID:39608217
|
研究论文 | 本文研究了基于面部动作单元(AUs)的自动急性应激识别,使用了传统机器学习和深度学习技术 | 本文提出了一个新的实验数据集,并使用计算特征选择方法来选择相关AUs的组合子集,结合传统机器学习和深度学习方法进行应激条件下的AUs识别 | NA | 研究自动急性应激识别 | 面部动作单元(AUs) | 机器学习 | NA | Layer-Wise Relevance Propagation算法 | 传统机器学习和深度学习方法 | 图像 | 58名参与者 |