本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!
除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
11601 | 2024-11-21 |
Convolutional Neural Networks to Study Contrast-Enhanced Magnetic Resonance Imaging-Based Skeletal Calf Muscle Perfusion in Peripheral Artery Disease
2024-06-01, The American journal of cardiology
DOI:10.1016/j.amjcard.2024.03.035
PMID:38580040
|
研究论文 | 研究使用卷积神经网络(CNN)通过对比增强磁共振成像(CE-MRI)的骨骼小腿肌肉灌注模式特征来区分外周动脉疾病(PAD)患者与匹配的对照组 | 首次使用卷积神经网络分析对比增强磁共振成像的骨骼小腿肌肉灌注模式,以区分PAD患者与对照组 | 研究样本量较小,且仅限于小腿肌肉的灌注模式分析 | 探索使用深度学习方法通过CE-MRI图像区分PAD患者与对照组 | PAD患者与匹配的对照组的小腿肌肉灌注模式 | 计算机视觉 | 外周动脉疾病 | 对比增强磁共振成像(CE-MRI) | 卷积神经网络(CNN) | 图像 | 56名参与者,包括36名PAD患者和20名匹配的对照组 |
11602 | 2024-11-21 |
Evaluation of a deep image-to-image network (DI2IN) auto-segmentation algorithm across a network of cancer centers
2024-Apr-01, Journal of cancer research and therapeutics
IF:1.4Q4
DOI:10.4103/jcrt.jcrt_769_23
PMID:39023610
|
研究论文 | 本文评估了一种基于深度图像到图像网络(DI2IN)的自动分割算法在多个癌症中心的性能 | 首次进行多机构研究,描述并评估基于深度图像到图像网络(DI2IN)的AI算法用于自动分割危及器官(OARs) | NA | 评估AI算法在自动分割危及器官(OARs)中的应用效果 | 危及器官(OARs)的自动分割算法 | 计算机视觉 | NA | 深度学习 | 深度图像到图像网络(DI2IN) | 图像 | 156名患者和1366个轮廓 |
11603 | 2024-11-21 |
Application of artificial intelligence in brain arteriovenous malformations: Angioarchitectures, clinical symptoms and prognosis prediction
2024-Mar-22, Interventional neuroradiology : journal of peritherapeutic neuroradiology, surgical procedures and related neurosciences
IF:1.5Q3
DOI:10.1177/15910199241238798
PMID:38515371
|
review | 本文综述了人工智能在脑动静脉畸形管理中的应用 | 人工智能算法在脑动静脉畸形管理中的多个方面得到了应用,特别是在机器学习和深度学习模型中 | 本文总结了当前研究的局限性和未来研究方向 | 总结人工智能在脑动静脉畸形管理中的应用 | 脑动静脉畸形 | machine learning | 脑血管疾病 | machine learning, deep learning | machine learning, deep learning | image | NA |
11604 | 2024-11-21 |
A systematic analysis of deep learning in genomics and histopathology for precision oncology
2024-02-05, BMC medical genomics
IF:2.1Q3
DOI:10.1186/s12920-024-01796-9
PMID:38317154
|
综述 | 本文对2010年至2023年期间深度学习在基因组学和组织病理学中的应用进行了系统性综述 | 本文介绍了多模态深度学习模型,这些模型能够同时处理病理切片图像和基因组数据,从而实现比单模态模型更高的性能 | 多模态深度学习的应用在不同肿瘤实体和临床场景中缺乏一致性,且相关研究数量有限 | 量化深度学习在病理学、基因组学及其联合应用中的使用情况 | 深度学习在病理学和基因组学中的应用,特别是多模态深度学习模型的应用 | 数字病理学 | NA | 深度学习 | 多模态深度学习模型 | 图像和基因组数据 | NA |
11605 | 2024-11-21 |
Role of Artificial intelligence model in prediction of low back pain using T2 weighted MRI of Lumbar spine
2024, F1000Research
DOI:10.12688/f1000research.154680.2
PMID:39483709
|
研究论文 | 研究探讨了人工智能模型在利用T2加权MRI预测腰椎疼痛中的作用 | 首次使用多种机器学习和深度学习模型(如随机森林、AdaBoost、ResNet和GoogleNet)来预测腰椎疼痛,并展示了这些模型在提高诊断准确性方面的潜力 | 研究样本量较小,且仅限于使用T2加权MRI图像 | 研究人工智能模型在预测腰椎疼痛中的应用,以提高诊断准确性和患者管理 | 腰椎疼痛患者及其T2加权MRI图像 | 机器学习 | 腰椎疼痛 | MRI | 随机森林、决策树、逻辑回归、K近邻、AdaBoost、ResNet、GoogleNet | 图像 | 200名MRI患者(100名病例和100名对照) |
11606 | 2024-11-21 |
DMAeEDNet: Dense Multiplicative Attention Enhanced Encoder Decoder Network for Ultrasound-Based Automated Breast Lesion Segmentation
2024, IEEE access : practical innovations, open solutions
IF:3.4Q2
DOI:10.1109/access.2024.3394808
PMID:39553390
|
研究论文 | 本文提出了一种低复杂度的深度学习网络DMAeEDNet,用于超声图像中乳腺病变的自动分割 | 首次在编码器-解码器网络的编码层和输出层中引入密集乘法注意力组件,以选择性地增强相关特征 | NA | 提高乳腺病变在超声图像中的自动分割精度,同时降低计算复杂度 | 乳腺病变在超声图像中的自动分割 | 计算机视觉 | 乳腺癌 | 深度学习 | 编码器-解码器网络 | 图像 | 使用了两个公开数据集和一个临床记录数据集 |
11607 | 2024-11-21 |
Panning for gold: Comparative analysis of cross-platform approaches for automated detection of political content in textual data
2024, PloS one
IF:2.9Q1
DOI:10.1371/journal.pone.0312865
PMID:39556542
|
研究论文 | 本文比较了不同平台上的自动化内容分析技术在德语文本数据中检测政治内容的性能 | 本文首次在德语文本数据中比较了基于字典、经典监督机器学习和深度学习的政治内容检测技术 | 本文仅限于德语文本数据,未涵盖其他语言 | 研究如何在多选择媒体环境中理解和测量政治信息消费 | 德语文本数据中的政治内容检测 | 自然语言处理 | NA | 自动化内容分析技术 | 深度学习模型、经典机器学习模型 | 文本 | 66个模型 |
11608 | 2024-11-21 |
Radiomics in precision medicine for colorectal cancer: a bibliometric analysis (2013-2023)
2024, Frontiers in oncology
IF:3.5Q2
DOI:10.3389/fonc.2024.1464104
PMID:39558950
|
综述 | 本文对2013年至2023年间结直肠癌(CRC)放射组学领域的文献进行了全面的文献计量分析 | 本文通过文献计量工具分析了放射组学在结直肠癌中的研究趋势,特别是深度学习和多组学整合的兴起 | 本文主要基于文献计量分析,未涉及具体实验数据或模型验证 | 探讨放射组学在结直肠癌精准医学中的应用和研究趋势 | 结直肠癌(CRC)的放射组学研究文献 | 数字病理学 | 结直肠癌 | 放射组学 | NA | 文献 | 1226篇出版物 |
11609 | 2024-11-21 |
Enhancing clinical decision-making in endometrial cancer through deep learning technology: A review of current research
2024 Jan-Dec, Digital health
IF:2.9Q2
DOI:10.1177/20552076241297053
PMID:39559386
|
综述 | 本文综述了深度学习技术在子宫内膜癌诊断和管理中的应用现状 | 深度学习模型能够自主学习和提取复杂的影像和病理数据特征,显著提高了子宫内膜癌诊断的准确性 | 深度学习在子宫内膜癌诊断中的应用仍面临挑战,需要进一步探索其未来发展方向 | 旨在通过详细分析,为未来研究方向提供信息,并促进深度学习技术在子宫内膜癌诊断和治疗策略中的整合 | 子宫内膜癌的诊断和管理 | 计算机视觉 | 妇科肿瘤 | 深度学习 | 深度学习模型 | 影像和病理数据 | NA |
11610 | 2024-11-21 |
Anatomy-Informed Multimodal Learning for Myocardial Infarction Prediction
2024, IEEE open journal of engineering in medicine and biology
IF:2.7Q3
DOI:10.1109/OJEMB.2024.3403948
PMID:39559783
|
研究论文 | 提出了一种解剖信息引导的多模态深度学习框架,用于预测未来心肌梗死 | 首次尝试通过深度学习框架结合多模态数据进行未来心肌梗死预测 | 结果尚未达到实际应用的必要标准 | 提高冠状动脉疾病患者未来心肌梗死事件的预测准确性 | 冠状动脉疾病患者和侵入性冠状动脉造影图像 | 机器学习 | 心血管疾病 | 深度学习 | 卷积神经网络(CNN)和人工神经网络(ANN) | 图像和临床数据 | 445名急性冠状动脉综合征患者 |
11611 | 2024-11-21 |
Classification of Aortic Stenosis Patients via ECG-Independent Multi-Site Measurements of Cardiac-Induced Accelerations and Angular Velocities at the Skin Level
2024, IEEE open journal of engineering in medicine and biology
IF:2.7Q3
DOI:10.1109/OJEMB.2024.3402151
PMID:39559782
|
研究论文 | 本文研究了通过皮肤表面的多站点心脏诱导加速度和角速度测量来分类主动脉瓣狭窄患者和健康志愿者的可行性,并确定了最佳传感器位置 | 本文首次结合SCG和GCG信号,并使用机器学习和深度学习方法进行分类,显著提高了分类准确率 | 研究样本量较小,仅包括15名健康受试者和15名主动脉瓣狭窄患者 | 评估SCG和GCG在皮肤表面的记录是否适合分类主动脉瓣狭窄患者,并确定最佳传感器位置 | 主动脉瓣狭窄患者和健康志愿者 | 心血管疾病 | 心血管疾病 | NA | 支持向量机(SVM)和ResNet18 | 信号 | 30名受试者(15名健康受试者和15名主动脉瓣狭窄患者) |
11612 | 2024-11-21 |
Using deep learning and large protein language models to predict protein-membrane interfaces of peripheral membrane proteins
2024, Bioinformatics advances
IF:2.4Q2
DOI:10.1093/bioadv/vbae078
PMID:39559823
|
研究论文 | 本文探讨了使用深度学习和大型蛋白质语言模型预测外周膜蛋白的蛋白质-膜界面 | 首次展示了使用自然语言处理和蛋白质语言模型预测外周膜蛋白的膜相互作用氨基酸的潜力,无需3D结构数据 | NA | 研究蛋白质-膜界面相互作用,以提高对相关疾病发病机制的理解 | 外周膜蛋白的膜相互作用氨基酸 | 机器学习 | NA | 自然语言处理 | 深度学习模型 | 蛋白质数据 | NA |
11613 | 2024-11-21 |
EFFNet: A skin cancer classification model based on feature fusion and random forests
2023, PloS one
IF:2.9Q1
DOI:10.1371/journal.pone.0293266
PMID:37871038
|
研究论文 | 提出了一种基于特征融合和随机森林的皮肤癌分类模型EFFNet | 引入改进的分层双线性池化来捕捉不同卷积层之间的特征交互,增强了特征的表达能力 | 未提及 | 克服深度学习在皮肤癌分类中数据不平衡、特征冗余和特征交互被忽略的问题 | 皮肤癌分类 | 计算机视觉 | 皮肤癌 | 随机森林 | EfficientNetV2 | 图像 | 使用了HAM10000数据集,通过图像增强技术使每类训练集图像平衡 |
11614 | 2024-11-21 |
Material decomposition from photon-counting CT using a convolutional neural network and energy-integrating CT training labels
2022-07-18, Physics in medicine and biology
IF:3.3Q1
DOI:10.1088/1361-6560/ac7d34
PMID:35767986
|
研究论文 | 本文提出了一种利用卷积神经网络和能量积分CT训练标签从光子计数CT进行材料分解的方法 | 通过使用高剂量多能量积分探测器数据提供的分解图作为训练标签,补偿光子计数探测器中的光谱畸变,提高了材料分解的准确性 | 深度学习方法导致了一些模糊,调制传递函数在50%时从1.98线对/毫米降至1.75线对/毫米 | 提高光子计数CT材料分解的准确性 | 光子计数CT和能量积分CT的材料分解 | 计算机视觉 | NA | 光子计数CT(PCCT) | 3D U-net | 图像 | 使用碘和钙小瓶进行测量 |
11615 | 2024-11-21 |
Advances in micro-CT imaging of small animals
2021-Aug, Physica medica : PM : an international journal devoted to the applications of physics to medicine and biology : official journal of the Italian Association of Biomedical Physics (AIFB)
DOI:10.1016/j.ejmp.2021.07.005
PMID:34284331
|
综述 | 本文综述了微型CT在小动物成像中的最新进展和应用 | 介绍了基于能量积分探测器和新一代光子计数X射线探测器(PCDs)的双能微型CT光谱扫描技术,以及X射线相位对比成像(XPC)和深度学习在微型CT中的应用 | 未详细讨论微型CT在临床转化中的具体挑战 | 回顾微型CT在临床前研究中的最新进展和应用 | 微型CT成像技术及其在小动物成像中的应用 | 计算机视觉 | NA | 微型CT成像 | 深度学习 | 图像 | NA |
11616 | 2024-11-21 |
Evaluating renal lesions using deep-learning based extension of dual-energy FoV in dual-source CT-A retrospective pilot study
2021-Jun, European journal of radiology
IF:3.2Q1
DOI:10.1016/j.ejrad.2021.109734
PMID:33933837
|
研究论文 | 本文介绍了一种基于深度学习的双能场扩展方法,用于在双源CT中评估肾病变 | 提出了一种基于深度学习的双能场扩展算法(DEEDL),能够从有限的数据中重建完整的双能场,从而在较小的场范围内可靠地测量HU值并评估肾病变 | 本文仅进行了回顾性研究,样本量较小,需要进一步的前瞻性研究和更大样本量的验证 | 开发一种基于深度学习的方法,用于在双源CT中扩展双能场,以评估肾病变 | 肾病变 | 计算机视觉 | 肾病 | 双源CT | 深度学习算法 | CT图像 | 50名患者的训练数据和128名患者的回顾性数据 |
11617 | 2024-11-21 |
Deep learning based spectral extrapolation for dual-source, dual-energy x-ray computed tomography
2020-Sep, Medical physics
IF:3.2Q1
DOI:10.1002/mp.14324
PMID:32531114
|
研究论文 | 本文提出了一种基于深度学习的双源双能X射线计算机断层扫描(CT)光谱外推方法 | 本文创新性地使用深度学习算法来实现双源双能CT数据的光谱外推,通过学习特征-对比关系来提高外推的准确性 | 本文方法在处理几何简单的幻影数据时性能有所下降,表明其依赖于特征-对比关系来正确推断光谱对比度 | 研究目的是开发一种能够在外推光谱对比度时提高准确性的深度学习算法 | 研究对象是双源双能腹部X射线CT扫描数据 | 计算机视觉 | NA | 深度学习 | 卷积神经网络(CNN) | 图像 | 50例双源双能腹部X射线CT扫描数据 |
11618 | 2024-11-20 |
An intelligent sensing platform for detecting and identifying biochemical substances based on terahertz spectra
2025-Jan-01, Talanta
IF:5.6Q1
DOI:10.1016/j.talanta.2024.126950
PMID:39353219
|
研究论文 | 本文开发了一种基于太赫兹光谱的智能传感平台,用于准确识别各种生物化学物质的太赫兹光谱 | 提出了两种识别模式:一维太赫兹光谱识别(OTSI)和基于太赫兹光谱图像的识别(TSII),并分别使用小型卷积神经网络(MCNN)和YOLO-v5目标检测模型进行识别 | NA | 开发一种智能传感平台,用于准确识别生物化学物质的太赫兹光谱 | 五种氨基酸(苯丙氨酸、甲硫氨酸、赖氨酸、亮氨酸、苏氨酸)和五种碳水化合物(阿斯巴甜、果糖、葡萄糖、乳糖一水合物、蔗糖) | 机器学习 | NA | 太赫兹时域光谱(THz-TDS) | 卷积神经网络(CNN)、YOLO-v5 | 光谱 | 10种生物化学物质 |
11619 | 2024-11-20 |
Rapid identification of Radix Astragali by data fusion of laser-induced breakdown spectroscopy and Raman spectroscopy coupled with deep learning
2025-Jan-01, Talanta
IF:5.6Q1
DOI:10.1016/j.talanta.2024.127016
PMID:39406087
|
研究论文 | 本文提出了一种结合激光诱导击穿光谱(LIBS)和拉曼光谱与深度学习技术的方法,用于快速准确地识别黄芪样本 | 本文创新性地将LIBS和拉曼光谱数据融合,并利用卷积神经网络(CNN)模型进行分类,显著提高了黄芪样本的识别准确率 | 本文未详细讨论该方法在其他药材或复杂环境下的适用性和性能 | 旨在提高黄芪样本的快速准确识别能力,评估其质量和药效 | 黄芪样本 | 机器学习 | NA | 激光诱导击穿光谱(LIBS)、拉曼光谱 | 卷积神经网络(CNN) | 光谱数据 | 未明确提及具体样本数量 |
11620 | 2024-11-20 |
A smartphone-integrated deep learning strategy-assisted rapid detection system for monitoring dual-modal immunochromatographic assay
2025-Jan-01, Talanta
IF:5.6Q1
DOI:10.1016/j.talanta.2024.127043
PMID:39406103
|
研究论文 | 研究将自建并优化训练的YOLO v5模型集成到Java语言开发的智能手机应用中,开发了一种基于深度学习策略的双模态免疫层析快速检测系统,用于黄曲霉毒素B1(AFB1)的等级判定和浓度预测 | 创新性地使用量子点微球荧光免疫层析芯片进行半定量分析,并结合传统的胶体金纳米颗粒比色条,开发了一种紧凑且多功能的硬件设备,易于集成到不同尺寸的智能手机中,并利用智能手机的无线充电功能解决供电问题 | NA | 开发一种基于深度学习策略的双模态免疫层析快速检测系统,用于黄曲霉毒素B1(AFB1)的等级判定和浓度预测 | 黄曲霉毒素B1(AFB1)的等级判定和浓度预测 | 计算机视觉 | NA | 深度学习 | YOLO v5 | 图像 | NA |