深度学习在生物医药领域的应用

本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新(使用关键词“['deep learning']”过滤),已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!

如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!

Sample Image
添加微信请说明来意
Sample Image
微信赞赏

除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价19.9元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。

当前筛选条件: [分区不过滤] [IF不过滤] [发表日期不过滤] [清除筛选条件]
当前共找到 33293 篇文献,本页显示第 11621 - 11640 篇。
序号 推送日期 文章 类型 简述 创新点 不足 研究目的 研究对象 领域 病种 技术 模型 数据类型 样本量 算法框架 模型架构 性能指标 计算资源
11621 2025-05-17
High-precision lung cancer subtype diagnosis on imbalanced exosomal data via Exo-LCClassifier
2025, Frontiers in genetics IF:2.8Q2
research paper 提出了一种名为Exo-LCClassifier的创新深度学习方法,用于预测肺癌亚型,解决了基因表达数据高维度和不平衡的挑战 整合了特征选择、一维卷积神经网络(1D CNN)和改进的Wasserstein生成对抗网络(WGAN),通过数据增强和分类提高诊断准确性 未提及在实际临床环境中的验证情况,可能影响其临床应用的可推广性 解决肺癌基因表达数据分析中的不平衡学习问题,提高肺癌亚型诊断的准确性 肺癌亚型的基因表达数据 digital pathology lung cancer DESeq2, WGAN, 1D CNN 1D CNN, WGAN gene expression data 未明确提及具体样本数量,但使用了外部GEO肺癌数据集进行验证 NA NA NA NA
11622 2025-05-16
Letter to 'Automated CT image prescription of the gallbladder using deep learning: Development, evaluation, and health promotion'
2025 Jan-Dec, Acute medicine & surgery IF:1.5Q2
NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
11623 2025-05-17
Prediction of prognosis in acute ischemic stroke after mechanical thrombectomy based on multimodal MRI radiomics and deep learning
2025, Frontiers in neurology IF:2.7Q3
研究论文 本研究探讨了基于多模态MRI影像组学和深度学习的CRD模型在预测接受机械取栓治疗的急性缺血性卒中患者不良预后中的价值 首次结合临床数据、影像组学特征和深度学习模型构建了综合预测模型CRD,在预测急性缺血性卒中预后方面表现出色 回顾性研究设计可能导致选择偏倚,样本量相对有限(222例患者) 开发更准确的工具预测急性缺血性卒中患者机械取栓后的不良预后 接受机械取栓治疗的急性缺血性卒中患者 数字病理学 心血管疾病 多模态MRI ResNet101与逻辑回归结合的CRD模型 医学影像 222例患者(训练组155例,验证组67例) NA NA NA NA
11624 2025-05-17
Review of different convolutional neural networks used in segmentation of prostate during fusion biopsy
2025, Central European journal of urology IF:1.4Q3
综述 本文综述了不同卷积神经网络在前列腺融合活检分割中的应用 强调了U-Net架构在高级医学图像分析中的主导地位,并指出所有算法在自动前列腺分割中均达到Dice相似系数74%以上的高精度 不同研究间评估分割结果的方法存在显著异质性,且需要更大样本量的未来研究来验证结果 探索深度学习算法在前列腺融合活检中加速前列腺轮廓勾画的潜力 前列腺癌患者的多参数磁共振成像(mpMRI)数据 数字病理学 前列腺癌 多参数磁共振成像(mpMRI) CNN, U-Net 医学图像 NA NA NA NA NA
11625 2025-05-17
An Explainable Deep Learning Framework for Predicting Postoperative Radiotherapy-Induced Vaginal Stenosis in Surgically Treated Cervical Cancer Patients
2025, Annali italiani di chirurgia IF:0.9Q3
研究论文 开发并验证了一个可解释的深度学习框架,用于预测宫颈癌患者术后放疗引起的阴道狭窄风险 结合Squeeze-and-Excitation网络和Grad-CAM可视化,提高了模型的准确性和可解释性 研究样本量较小(140例患者),且为回顾性研究 预测宫颈癌患者术后放疗引起的阴道狭窄风险,以实现早期个性化干预 接受根治性子宫切除术及放疗的宫颈癌患者 数字病理 宫颈癌 CT成像 SE-Inception, ResNet50, Random Forest 图像 140例患者(51例发生阴道狭窄) NA NA NA NA
11626 2025-10-07
Applicability of Deep Learning to Dynamically Identify the Different Organs of the Pelvic Floor in the Midsagittal Plane
2024-Dec, International urogynecology journal IF:1.8Q3
研究论文 本研究开发并验证了卷积神经网络在动态超声图像中识别盆底器官的可行性 首次将深度学习应用于动态超声图像中盆底器官的自动识别,比较了三种不同CNN架构的性能 样本量相对有限,某些器官(如膀胱和子宫)的分割精度较低 验证深度学习在盆底动态超声图像中识别不同器官的适用性 盆底器官,包括膀胱、子宫、肛门和肛提肌 计算机视觉 盆底疾病 动态超声成像,Valsalva动作 CNN 超声视频 110名患者(86名训练,24名测试) NA UNet, FPN, LinkNet Dice相似性指数 NA
11627 2025-05-17
Protein engineering using variational free energy approximation
2024-12-01, Nature communications IF:14.7Q1
研究论文 本文提出了一种名为PREVENT的模型,通过变分自由能近似方法生成稳定且功能性的蛋白质变体 PREVENT模型通过学习蛋白质的序列和热力学景观,生成热力学稳定的功能性蛋白质变体,相比传统方法具有更高的效率和成功率 研究仅针对E. coli磷酸转移酶N-乙酰-L-谷氨酸激酶(EcNAGK)的40种变体进行了评估,需要更多样本来验证模型的普适性 加速蛋白质工程过程,生成稳定且功能性的蛋白质变体 E. coli磷酸转移酶N-乙酰-L-谷氨酸激酶(EcNAGK) 蛋白质工程 NA 变分自由能近似 PREVENT 蛋白质序列和结构数据 40种EcNAGK变体 NA NA NA NA
11628 2025-10-07
Integrative Network Analysis Reveals Novel Moderators of Aβ-Tau Interaction in Alzheimer's Disease
2024-Oct-28, bioRxiv : the preprint server for biology
研究论文 本研究采用深度学习网络整合方法分析阿尔茨海默病中Aβ与tau蛋白相互作用的调节因子 首次应用BIONIC深度学习网络整合方法结合蛋白质组学和蛋白质相互作用数据,发现GPNMB+小胶质细胞是Aβ-tau相互作用的新型调节因子 研究基于ROSMAP队列数据,需要在其他独立队列中验证结果的普适性 揭示阿尔茨海默病中淀粉样蛋白β与tau蛋白相互作用的调节机制 轻度认知障碍和早期阿尔茨海默病患者 生物医学信息学 阿尔茨海默病 蛋白质组学, 蛋白质-蛋白质相互作用分析 深度学习 蛋白质组数据, 基因表达数据, 组织病理学数据 ROSMAP队列样本 BIONIC 深度学习网络整合模型 线性回归分析, 互信息分析, Benjamini-Hochberg校正 NA
11629 2025-10-07
Deep-learning-enabled antibiotic discovery through molecular de-extinction
2024-Jul, Nature biomedical engineering IF:26.8Q1
研究论文 通过深度学习从灭绝生物蛋白质组中挖掘具有抗菌活性的多肽分子 首次将深度学习应用于分子去灭绝领域,从灭绝生物中发掘新型抗生素多肽 仅验证了69种预测多肽的实验活性,尚未进行大规模临床验证 开发新型抗生素以解决抗生素耐药性问题 灭绝生物的蛋白质组多肽序列 机器学习 细菌感染 深度学习预测、多肽合成、实验验证 神经网络 多肽序列数据 10,311,899条多肽序列 NA 序列编码器+神经网络集成模型 抗菌活性预测准确率 NA
11630 2025-05-17
Brain Age Analysis and Dementia Classification using Convolutional Neural Networks trained on Diffusion MRI: Tests in Indian and North American Cohorts
2024-Jul, Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference
研究论文 该研究探讨了在卷积神经网络(CNN)模型中添加扩散加权MRI(dMRI)作为输入对阿尔茨海默病分类和痴呆严重程度推断的价值,并在印度和北美人群数据集中进行了测试 研究了dMRI作为输入对CNN模型性能的提升,并评估了使用3D CycleGAN方法在训练前对成像数据集进行协调的效果 研究主要基于特定的数据集(ADNI和NIMHANS),可能在其他人群中的泛化能力有限 提升阿尔茨海默病分类和痴呆严重程度推断的准确性 印度和北美人群的脑部MRI扫描数据 数字病理学 阿尔茨海默病 扩散加权MRI(dMRI) CNN, 3D CycleGAN MRI图像 ADNI和NIMHANS队列的数据集 NA NA NA NA
11631 2025-05-17
Advantages of Modeling Photoplethysmography (PPG) Signals using Variational Autoencoders
2024-Jul, Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference
research paper 本文提出了一种基于变分自编码器(VAE)的PPG信号建模方法,并探讨了其优势和应用 提出了一种名为PPG-VAE的模型,能够识别PPG心跳波的局部斜率、去除高频噪声,并生成与现有信号形态匹配的新信号段 未提及具体的研究限制 探索PPG信号处理的新方法,提高信号分析和合成的能力 PPG信号 machine learning NA VAE VAE signal NA NA NA NA NA
11632 2025-05-17
Integrated Multi-Omics and Whole Slide Images for Survival Prediction in Glioblastoma Using Multiple Instance Learning and Co-Attention
2024-Jul, Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference
研究论文 本研究旨在通过整合全切片图像和多组学数据,结合生物通路知识,利用多实例学习和共注意力机制,提高胶质母细胞瘤的生存预测准确性 首次将多组学数据与全切片图像结合,利用生物通路知识进行整合,并通过多实例学习和共注意力机制提高预测性能 研究样本量相对较小(214例患者),且仅使用了TCGA数据库的数据 提高胶质母细胞瘤(GBM)患者的生存预测准确性 胶质母细胞瘤患者 数字病理学 胶质母细胞瘤 RNA测序、拷贝数变异分析、DNA甲基化分析 多实例学习和共注意力机制 全切片图像和多组学数据 214例GBM患者,包括447张全切片图像和多种多组学特征 NA NA NA NA
11633 2025-05-17
Automatic COVID-19 Detection from Chest X-ray using Deep MobileNet Convolutional Neural Network
2024-Jul, Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference
research paper 该研究提出了一种基于深度迁移学习MobileNetV2模型的自动检测COVID-19的方法,通过胸部X光片(CXR)进行病毒检测 结合预训练的MobileNetV2 CNN模型和SVM分类器,提高了COVID-19检测的准确率,从基线模型的92.28%提升至93.2% NA 开发一种自动检测COVID-19的计算工具,以应对全球医疗系统的压力 胸部X光片(CXR)数据 computer vision lung cancer deep learning, transfer learning MobileNetV2, CNN, SVM image NA NA NA NA NA
11634 2025-10-07
An updated compendium and reevaluation of the evidence for nuclear transcription factor occupancy over the mitochondrial genome
2024-Jun-06, bioRxiv : the preprint server for biology
研究论文 通过分析扩展的ENCODE ChIP-seq数据集和深度学习模型,系统评估核转录因子与线粒体基因组的关联证据 利用十年间大幅扩展的ENCODE数据集(6,153个ChIP实验)结合可解释深度学习模型,首次全面评估核转录因子在线粒体基因组上的占据情况 相同转录因子使用不同抗体和ChIP方案检测时,chrM占据证据的可重复性不一致 建立核转录因子与线粒体基因组关联的综合目录并重新评估相关证据标准 人类和小鼠的核转录因子与线粒体基因组的相互作用 计算生物学 NA ChIP-seq, 深度学习 深度学习模型 基因组测序数据 6,153个ChIP实验,942种蛋白质(其中763个为序列特异性转录因子) NA NA 可重复性评估 NA
11635 2025-10-07
ProkDBP: Toward more precise identification of prokaryotic DNA binding proteins
2024-Jun, Protein science : a publication of the Protein Society IF:4.5Q1
研究论文 开发了一种名为ProkDBP的新型机器学习计算模型,用于更精确地预测原核生物DNA结合蛋白 首次专门针对原核生物DNA结合蛋白开发预测模型,结合浅层学习和深度学习算法,采用随机森林变量重要性度量筛选进化显著特征 未明确说明模型在哪些特定原核生物类型或条件下的性能差异 提高原核生物DNA结合蛋白的预测准确性 原核生物DNA结合蛋白 机器学习 NA 机器学习预测 LGBM, 随机森林, 浅层学习算法, 深度学习模型 蛋白质序列特征数据 NA NA LGBM, 随机森林 auROC, auPRC, 五折交叉验证准确率 NA
11636 2025-10-07
Accurate single-molecule spot detection for image-based spatial transcriptomics with weakly supervised deep learning
2024-May-15, Cell systems IF:9.0Q1
研究论文 提出Polaris分析流程,通过弱监督深度学习方法实现图像空间转录组学中的单分子点检测 结合深度学习细胞分割与点检测模型以及概率基因解码器,为多种空间转录组技术提供统一解决方案 NA 开发准确量化单细胞基因表达的空间转录组学分析流程 图像空间转录组学数据 数字病理学 NA MERFISH, seqFISH, ISS 深度学习 图像 NA DeepCell NA NA NA
11637 2025-10-07
Graph neural networks for automatic extraction and labeling of the coronary artery tree in CT angiography
2024-May, Journal of medical imaging (Bellingham, Wash.)
研究论文 提出一种使用深度学习从冠状动脉CT血管造影中自动提取和解剖标记冠状动脉树的方法 首次将图卷积神经网络与多分辨率集成方法相结合,利用相邻血管段的几何和图像强度信息进行冠状动脉树的自动提取和标记 研究样本量相对较小(104例患者),仅来自两家医院 开发全自动的冠状动脉树提取和解剖标记方法,以支持冠状动脉疾病的自动报告 冠状动脉CT血管造影扫描图像 医学图像分析 冠状动脉疾病 冠状动脉CT血管造影 图卷积神经网络 医学影像 104名患者来自两家医院的CCTA扫描 NA 图卷积神经网络, 多分辨率集成模型 F1分数 NA
11638 2025-10-07
Efficacy of artificial intelligence in reducing miss rates of GI adenomas, polyps, and sessile serrated lesions: a meta-analysis of randomized controlled trials
2024-May, Gastrointestinal endoscopy IF:6.7Q1
荟萃分析 通过荟萃分析评估人工智能在内窥镜手术中降低胃肠道腺瘤、息肉和无蒂锯齿状病变漏诊率的效果 首次通过随机对照试验的荟萃分析系统评估AI对多种胃肠道病变漏诊率的综合影响 仅纳入7项随机对照试验,样本量有限;对晚期腺瘤漏诊率未见显著改善 评估人工智能技术在内窥镜检查中降低病变漏诊率的有效性 胃肠道腺瘤、息肉、无蒂锯齿状病变和微小腺瘤 医学人工智能 胃肠道疾病 内窥镜检查 卷积神经网络 内窥镜图像 7项随机对照试验 NA NA 相对风险, 置信区间, P值, Hedges' g NA
11639 2025-10-07
Geriatric depression and anxiety screening via deep learning using activity tracking and sleep data
2024-02, International journal of geriatric psychiatry IF:3.6Q1
研究论文 本研究开发了一种基于活动追踪和睡眠数据的深度学习模型,用于老年人抑郁和焦虑的筛查 首次开发基于活动追踪数据的混合输入深度学习模型,用于老年人抑郁和焦虑的多标签识别 NA 研究通过消费级腕戴式活动追踪器获取的时序数据训练端到端深度学习模型来识别共病抑郁和焦虑的可行性 老年人抑郁和焦虑筛查 机器学习 老年疾病 活动追踪, 睡眠监测 CNN, LSTM, ResNet 时间序列数据(步数, 睡眠阶段), 评估分数 NA NA ResNet, CNN, LSTM 汉明损失 NA
11640 2025-05-17
Scoping Review of Deep Learning Techniques for Diagnosis, Drug Discovery, and Vaccine Development in Leishmaniasis
2024, Transboundary and emerging diseases IF:3.5Q1
综述 本文对深度学习技术在利什曼病的诊断、药物发现和疫苗开发中的应用进行了范围综述 首次对深度学习在利什曼病领域的应用进行全面综述,填补了该领域的研究空白 仅对现有文献进行了分析,未进行新的实验验证 探讨深度学习技术在利什曼病领域的应用现状和未来发展方向 利什曼病的诊断、药物发现和疫苗开发 机器学习 利什曼病 深度学习 NA NA NA NA NA NA NA
回到顶部