本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!
除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
11641 | 2024-12-15 |
Integrative computational analyses implicate regulatory genomic elements contributing to spina bifida
2024, Genetics in medicine open
DOI:10.1016/j.gimo.2024.101894
PMID:39669613
|
研究论文 | 本研究通过整合计算分析,揭示了与脊柱裂相关的调控基因组元件 | 本研究采用了一种无靶向的全基因组方法,结合深度学习优先框架,识别了与脊柱裂相关的罕见单核苷酸和拷贝数变异,并揭示了这些变异对基因表达和功能通路的影响 | 本研究主要集中在罕见变异和调控区域的分析,可能忽略了其他类型的遗传变异对脊柱裂的影响 | 旨在揭示脊柱裂病理生理学背后的全基因组调控特征 | 脊柱裂患者和健康对照组的基因组调控区域 | 基因组学 | 脊柱裂 | 深度学习 | NA | 基因组数据 | 脊柱裂患者和健康对照组的样本 |
11642 | 2024-12-15 |
Explainable light-weight deep learning pipeline for improved drought stress identification
2024, Frontiers in plant science
IF:4.1Q1
DOI:10.3389/fpls.2024.1476130
PMID:39670267
|
研究论文 | 本文提出了一种用于识别马铃薯作物干旱胁迫的可解释轻量级深度学习管道 | 创新点在于结合预训练网络与精心设计的自定义层,并集成了基于梯度的可视化技术(如Grad-CAM),增强了模型的可解释性 | NA | 旨在提高作物干旱胁迫的识别精度,并为实时农业应用提供可解释的深度学习模型 | 马铃薯作物的干旱胁迫 | 计算机视觉 | NA | 深度学习 | DenseNet121 | 图像 | NA |
11643 | 2024-12-15 |
Enhancing diagnosis of Hirschsprung's disease using deep learning from histological sections of post pull-through specimens: preliminary results
2023-Nov-29, Pediatric surgery international
IF:1.5Q3
DOI:10.1007/s00383-023-05590-z
PMID:38019366
|
研究论文 | 本研究利用深度学习技术从回拉手术后的组织学切片中识别Hirschsprung病中的神经节细胞和肥大神经,以提高诊断准确性 | 首次使用AI技术基于U-net模型识别Hirschsprung病中的神经节细胞和肥大神经 | 研究样本量较小,且仅限于回拉手术后的组织学切片 | 开发一种基于人工智能的方法来提高Hirschsprung病的组织学诊断准确性 | Hirschsprung病中的神经节细胞和肥大神经 | 数字病理学 | Hirschsprung病 | 深度学习 | U-net | 图像 | 108个标注样本,数据增强后生成19,600张图像,最终用于训练和验证的图像为1945张 |
11644 | 2024-12-15 |
Shared computational principles for language processing in humans and deep language models
2022-03, Nature neuroscience
IF:21.2Q1
DOI:10.1038/s41593-022-01026-4
PMID:35260860
|
研究论文 | 本文探讨了人类大脑与自回归深度语言模型在处理语言时共享的计算原则 | 本文首次提供了人类大脑与自回归深度语言模型在处理自然叙事时共享三个基本计算原则的实证证据 | NA | 研究人类大脑与自回归深度语言模型在语言处理中的计算原则 | 人类大脑和自回归深度语言模型 | 自然语言处理 | NA | ECoG | 自回归深度语言模型 | 文本 | 9名参与者 |
11645 | 2024-12-15 |
Multimodality Imaging and Artificial Intelligence for Tumor Characterization: Current Status and Future Perspective
2020-Nov, Seminars in nuclear medicine
IF:4.6Q1
DOI:10.1053/j.semnuclmed.2020.07.003
PMID:33059823
|
研究论文 | 本文探讨了多模态影像与人工智能在肿瘤特征分析中的应用现状及未来展望 | 人工智能通过机器学习和深度学习,能够整合大量异质性数据进行分析,提供自动化和可重复的定量影像生物标志物 | 需要设定质量标准,包括影像采集的标准化、模型开发的透明性、验证和测试的高质量过程以及算法的更好可解释性 | 研究多模态影像与人工智能在肿瘤特征分析中的应用,以实现精准肿瘤学 | 肿瘤的特征分析和分子表达的非侵入性监测 | 计算机视觉 | NA | 机器学习,深度学习 | NA | 影像 | NA |
11646 | 2024-12-15 |
Nano-opto-electro-mechanical switches operated at CMOS-level voltages
2019-11-15, Science (New York, N.Y.)
DOI:10.1126/science.aay8645
PMID:31727832
|
研究论文 | 本文展示了在微米尺度的混合光子-等离子体结构中,利用光电机械效应在CMOS电压下实现光开关 | 本文首次展示了在CMOS电压下通过纳米级静电扰动实现快速光开关,并结合了光子和等离子体效应以最小化光学损耗 | 本文未详细讨论该技术的实际应用场景和大规模集成可能面临的挑战 | 探索在CMOS电压下实现光开关的技术,为集成光电子学提供新平台 | 微米尺度的混合光子-等离子体结构 | NA | NA | 光电机械效应 | NA | NA | NA |
11647 | 2024-12-14 |
Brain structural connectomic topology predicts medication response in youth with bipolar disorder: A randomized clinical trial
2025-Feb-15, Journal of affective disorders
IF:4.9Q1
DOI:10.1016/j.jad.2024.11.061
PMID:39577502
|
研究论文 | 本研究探讨了大脑结构连接组拓扑结构在预测双相情感障碍青少年药物反应中的作用 | 首次研究了大脑结构连接组拓扑结构在预测双相情感障碍青少年药物反应中的价值,并提出了基于深度学习的预测模型 | 需要独立重复实验来验证初步发现 | 研究大脑结构连接组拓扑结构在预测双相情感障碍青少年药物反应中的作用 | 双相情感障碍青少年患者的大脑结构连接组拓扑结构 | 神经影像学 | 双相情感障碍 | 结构磁共振成像(MRI) | 深度学习模型 | 图像 | 121名未接受过精神药物治疗的双相情感障碍I型青少年 |
11648 | 2024-12-14 |
A multi-perspective deep learning framework for enhancer characterization and identification
2025-Feb, Computational biology and chemistry
IF:2.6Q2
|
研究论文 | 本研究介绍了一种用于增强子特征化和识别的多视角深度学习框架MPDL-Enhancer | 创新的双尺度深度神经网络和独特的特征表示策略 | NA | 准确识别和表征增强子,以理解基因调控网络及相关疾病的发展 | 增强子序列 | 机器学习 | NA | dna2vec模型 | 双尺度深度神经网络 | DNA序列 | 独立测试数据集 |
11649 | 2024-12-14 |
Investigating streetscape environmental characteristics associated with road traffic crashes using street view imagery and computer vision
2025-Feb, Accident; analysis and prevention
DOI:10.1016/j.aap.2024.107851
PMID:39581057
|
研究论文 | 本研究利用街景图像和计算机视觉技术,结合语义分割和目标检测网络,分析了街道环境特征与道路交通事故之间的关系 | 本研究通过结合语义分割和目标检测网络,全面测量街道环境特征,克服了传统方法仅依赖语义分割的局限性 | 本研究主要基于百度街景图像,可能无法完全代表所有地区的街道环境特征 | 探讨街道环境特征与道路交通事故之间的关系,为提升道路安全提供依据 | 街道环境特征(如道路、人行道、建筑物等)与三种交通事故类型(车辆-车辆碰撞、车辆-行人碰撞、单车事故) | 计算机视觉 | NA | 深度学习 | 语义分割网络和目标检测网络 | 图像 | NA |
11650 | 2024-12-14 |
IoT based healthcare system using fractional dung beetle optimization enabled deep learning for breast cancer classification
2025-Feb, Computational biology and chemistry
IF:2.6Q2
|
研究论文 | 本文提出了一种基于物联网的医疗系统,利用分数阶蜣螂优化算法支持的深度学习进行乳腺癌分类 | 创新点在于结合了物联网技术和分数阶蜣螂优化算法,通过SqueezeNet_Fractional Dung Beetle Optimization (Squeeze_FDBO)提高了乳腺癌分类的准确性和路由性能 | NA | 旨在提高乳腺癌分类的准确性,从而促进早期检测和治疗 | 乳腺癌的分类和诊断 | 计算机视觉 | 乳腺癌 | 分数阶蜣螂优化算法 | SqueezeNet | 图像 | NA |
11651 | 2024-12-14 |
VAEEG: Variational auto-encoder for extracting EEG representation
2024-Dec-15, NeuroImage
IF:4.7Q1
DOI:10.1016/j.neuroimage.2024.120946
PMID:39571641
|
研究论文 | 本文提出了一种基于变分自编码器(VAE)的EEG信号自监督学习模型VAEEG,用于提取脑活动的有用表示 | VAEEG模型在EEG信号的重建性能上表现出色,并能有效提取与青少年脑发育、癫痫发作和睡眠阶段分类相关的潜在特征 | NA | 研究如何从复杂的EEG信号中提取更直观、简洁且有用的脑活动表示 | EEG信号及其在青少年脑发育、癫痫发作和睡眠阶段分类中的应用 | 机器学习 | NA | 变分自编码器(VAE) | 变分自编码器(VAE) | 脑电图(EEG)信号 | NA |
11652 | 2024-12-14 |
Deep learning applied to the segmentation of rodent brain MRI data outperforms noisy ground truth on full-fledged brain atlases
2024-Dec-15, NeuroImage
IF:4.7Q1
DOI:10.1016/j.neuroimage.2024.120934
PMID:39577575
|
研究论文 | 本文研究了深度学习模型在啮齿动物脑部MRI数据分割中的应用,发现其性能优于基于噪声标签的全脑图谱 | 本文首次展示了深度学习模型在啮齿动物脑部MRI数据分割中的应用,能够处理不同动物品系和尺寸的变化,并提供了不确定性估计和可解释性机制 | 本文仅在啮齿动物脑部MRI数据上进行了验证,尚未在其他类型的脑部图像或其他物种上进行测试 | 研究深度学习模型在啮齿动物脑部MRI数据分割中的应用,以提高定量分析的准确性 | 啮齿动物脑部MRI图像的自动分割 | 计算机视觉 | NA | MRI | U-Net, Attention-U-Net, DeepLab | 图像 | 超过10,000张啮齿动物脑部MRI图像 |
11653 | 2024-12-14 |
Generative modeling of the Circle of Willis using 3D-StyleGAN
2024-Dec-15, NeuroImage
IF:4.7Q1
DOI:10.1016/j.neuroimage.2024.120936
PMID:39586344
|
研究论文 | 本文使用3D-StyleGAN生成Circle of Willis的Time-of-Flight磁共振血管成像(TOF MRA)数据,以解决医学数据稀缺问题 | 本文首次将StyleGANv2架构应用于3D,生成高质量且多样化的TOF MRA数据,并在下游任务中展示了其效用 | 本文未提及生成数据在其他病理数据集或不同医学成像模式中的应用效果 | 开发一种生成模型,用于合成Circle of Willis的3D TOF MRA数据,以提高深度学习模型在脑血管疾病诊断和治疗中的应用 | Circle of Willis的脑血管结构 | 计算机视觉 | 脑血管疾病 | 3D-StyleGAN | StyleGANv2 | 图像 | 1782个TOF MRA扫描数据 |
11654 | 2024-12-14 |
Differentiating atypical parkinsonian syndromes with hyperbolic few-shot contrastive learning
2024-Dec-15, NeuroImage
IF:4.7Q1
DOI:10.1016/j.neuroimage.2024.120940
PMID:39586345
|
研究论文 | 本文提出了一种新的少样本学习框架,用于在有限的训练数据下区分多系统萎缩帕金森型(MSA-P)和进行性核上性麻痹(PSP) | 本文引入了超曲面空间嵌入技术,通过识别非目标分类类别的铁积累模式特征区域,增强了模型的稳定性 | 本文的实验结果主要基于特定的数据集和模型,可能需要进一步验证其在其他数据集和场景中的泛化能力 | 解决在有限训练数据下区分非典型帕金森综合征(APS)中不同亚型的挑战 | 多系统萎缩帕金森型(MSA-P)和进行性核上性麻痹(PSP) | 机器学习 | 神经退行性疾病 | 少样本学习 | 对比学习 | 图像 | 少量数据样本 |
11655 | 2024-12-14 |
Endomicroscopic AI-driven morphochemical imaging and fs-laser ablation for selective tumor identification and selective tissue removal
2024-Dec-13, Science advances
IF:11.7Q1
DOI:10.1126/sciadv.ado9721
PMID:39661684
|
研究论文 | 本文研究了利用多模态非线性光学显微镜结合深度学习技术进行头颈部肿瘤的早期检测和选择性组织切除 | 本文创新性地将多模态非线性光学显微镜与深度学习相结合,实现了无标记的组织形态化学成分评估,并首次将飞秒激光消融技术集成到内窥镜中,实现了术中“寻找并治疗”的先进手术方法 | 本文为临床前研究,样本量较小,且未在临床环境中验证 | 开发一种用于头颈部肿瘤早期检测和选择性组织切除的新型诊断和治疗技术 | 头颈部肿瘤的早期检测和选择性组织切除 | 数字病理学 | 头颈部癌症 | 多模态非线性光学显微镜(CARS、TPEF、SHG)、飞秒激光消融 | 深度学习语义分割模型 | 图像 | 15名患者 |
11656 | 2024-12-14 |
Development of Periapical Index Score Classification System in Periapical Radiographs Using Deep Learning
2024-Dec-13, Journal of imaging informatics in medicine
DOI:10.1007/s10278-024-01360-y
PMID:39671050
|
研究论文 | 本研究开发并比较了用于牙周指数评分系统的二分类方法,以提高牙周炎早期阶段的评分准确性 | 提出了将牙周指数评分1和2归为同一类别的健康-疾病分类方法,显著提高了分类准确性 | 研究仅使用了三种卷积神经网络模型,未来可以探索更多模型以进一步提高准确性 | 开发和验证基于深度学习的牙周指数评分系统,以提高牙周炎早期阶段的评分准确性 | 牙周指数评分系统在牙周炎早期阶段的分类准确性 | 计算机视觉 | 牙周炎 | 卷积神经网络 | CNN | 图像 | 2266个牙周根区域来自520张牙周X光片 |
11657 | 2024-12-14 |
Deep learning for segmentation of colorectal carcinomas on endoscopic ultrasound
2024-Dec-13, Techniques in coloproctology
IF:2.7Q1
DOI:10.1007/s10151-024-03056-5
PMID:39671056
|
研究论文 | 本研究开发了一种卷积神经网络用于内镜超声图像中结直肠癌的自动分割 | 提出了一种基于深度学习的内镜超声图像自动分割方法,以标准化内镜超声的解读 | 需要进一步的临床实践验证 | 探索内镜超声图像自动分割在早期直肠癌中的应用 | 内镜超声图像中的直肠癌、黏膜下层和肌层 | 计算机视觉 | 结直肠癌 | NA | 卷积神经网络(CNN) | 图像 | 373个专家手动分割数据 |
11658 | 2024-12-14 |
Identification, characterization, and design of plant genome sequences using deep learning
2024-Dec-12, The Plant journal : for cell and molecular biology
DOI:10.1111/tpj.17190
PMID:39666835
|
综述 | 本文综述了深度学习在植物基因组序列分析中的应用,包括基因表达预测、染色质相互作用和表观遗传特征的识别,并详细阐述了基于生成对抗网络、大模型和注意力机制的基序挖掘和功能组件设计与合成 | 本文详细介绍了基于生成对抗网络、大模型和注意力机制的基序挖掘和功能组件设计与合成,并讨论了深度学习在蛋白质结构和功能预测、基因组预测和大模型应用方面的进展 | NA | 探讨深度学习在植物生物学中的应用及其未来发展前景 | 植物基因组序列、基因表达、染色质相互作用、表观遗传特征、蛋白质结构和功能、基因组预测 | 机器学习 | NA | 深度学习 | 生成对抗网络、大模型、注意力机制 | 基因组序列 | NA |
11659 | 2024-12-14 |
CACs Recognition of FISH Images Based on Adaptive Mean Teacher Semi-supervised Learning with Domain-Knowledge Pseudo Label
2024-Dec-12, Journal of imaging informatics in medicine
DOI:10.1007/s10278-024-01348-8
PMID:39668308
|
研究论文 | 本文提出了一种基于自适应均值教师半监督学习的方法,用于识别FISH图像中的循环基因异常细胞(CACs),并结合领域知识伪标签来提高检测性能 | 本文创新性地提出了自适应均值教师方法,并结合领域知识伪标签来提高伪标签的质量,从而增强信号点检测任务的效果 | 本文未详细讨论该方法在不同数据集上的泛化能力 | 开发一种有效的半监督学习方法,用于检测循环基因异常细胞(CACs),以辅助肺癌的早期诊断和筛查 | 循环基因异常细胞(CACs)的检测 | 计算机视觉 | 肺癌 | 半监督学习 | 自适应均值教师 | 图像 | 使用2%、5%和10%的标记数据进行实验 |
11660 | 2024-12-13 |
Improved Prediction of Ligand-Protein Binding Affinities by Meta-modeling
2024-Dec-09, Journal of chemical information and modeling
IF:5.6Q1
DOI:10.1021/acs.jcim.4c01116
PMID:39576762
|
研究论文 | 本文开发了一个框架,通过元建模方法整合基于力场的经验对接模型和基于序列的深度学习模型,以提高配体-蛋白质结合亲和力的预测准确性 | 本文的创新点在于通过元建模方法整合多种模型,显著提高了结合亲和力的预测性能,并展示了更好的数据库扩展性和灵活性 | NA | 提高配体-蛋白质结合亲和力的预测准确性 | 配体-蛋白质结合亲和力 | 机器学习 | NA | 元建模 | 深度学习模型 | 序列数据 | NA |