深度学习在生物医药领域中的应用

本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!

如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!

Sample Image
添加微信请说明来意
Sample Image
微信赞赏

除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。

当前筛选条件: [分区不过滤] [IF不过滤] [发表日期不过滤] [清除筛选条件]
当前共找到 24745 篇文献,本页显示第 1161 - 1180 篇。
序号 推送日期 文章 类型 简述 创新点 不足 研究目的 研究对象 领域 病种 技术 模型 数据类型 样本量
1161 2025-05-11
Automated segmentation by SCA-UNet can be directly used for radiomics diagnosis of thymic epithelial tumors
2025-Apr, European journal of radiology IF:3.2Q1
研究论文 本研究开发了一种名为SCA-UNet的深度学习网络,用于自动分割胸腺病变,并应用于胸腺上皮肿瘤(TETs)的放射组学诊断和风险评估 提出了结合空间通道注意力的SCA-UNet模型,增强了全局上下文感知能力,提高了分割精度和泛化性能 研究仅基于单一医疗中心的数据,可能影响模型的泛化能力 开发自动分割胸腺病变的深度学习模型,并探索其在TETs诊断和风险评估中的应用 712例纵隔病变患者的术前CT图像 数字病理 胸腺上皮肿瘤 CT成像 SCA-UNet(基于UNet改进的深度学习网络) 医学影像(CT图像) 712例患者
1162 2025-05-11
A multi-stage multi-modal learning algorithm with adaptive multimodal fusion for improving multi-label skin lesion classification
2025-Apr, Artificial intelligence in medicine IF:6.1Q1
research paper 本文提出了一种基于不确定性的混合融合策略的多模态学习算法,用于提高多标签皮肤病变分类的准确性 引入了一种新颖的基于不确定性的混合融合策略,结合了临床图像、皮肤镜图像和元数据三种不同模态,通过中间融合策略和不确定性机制自适应地整合多模态信息 未提及具体的数据集规模限制或算法在特定条件下的性能局限 提高皮肤癌诊断的准确性和临床适用性 皮肤病变图像(临床图像和皮肤镜图像)及相关元数据 digital pathology skin cancer multi-modal learning, uncertainty mechanism deep learning-based multi-modal fusion algorithm image, metadata 使用了一个流行的公开皮肤疾病诊断数据集(具体数量未提及)
1163 2025-05-11
Optimizing visible retinal area in pediatric ultra-widefield fundus imaging: The effectiveness of mydriasis and eyelid lifting
2025-Apr, Photodiagnosis and photodynamic therapy IF:3.1Q2
研究论文 本研究探讨了在儿童超广角眼底成像中,通过散瞳和眼睑提升来最大化可见视网膜区域(VRA)的效果 结合散瞳和手动眼睑提升显著增加了超广角眼底成像中的可见视网膜区域,有效减少了由睫毛和眼睑引起的伪影影响 研究样本量较小(53名儿童,106只眼睛),且仅在单一医院进行,可能影响结果的普遍性 最大化儿童超广角眼底成像中的可见视网膜区域,以提高周边视网膜病变的检测率 53名儿童(106只眼睛)的超广角眼底图像 数字病理学 视网膜病变 超广角Optos成像系统(Daytona P200T)和基于深度学习的图像分割工具 深度学习 图像 53名儿童(106只眼睛)
1164 2025-05-11
Noninvasive Artificial Intelligence System for Early Predicting Residual Cancer Burden During Neoadjuvant Chemotherapy in Breast Cancer
2025-Apr-01, Annals of surgery IF:7.5Q1
research paper 开发一种人工智能系统,用于在乳腺癌新辅助化疗期间早期预测残留癌症负担 提出了一种多任务AI系统,能够在乳腺癌新辅助化疗期间早期预测残留癌症负担,填补了早期检测方法的空白 研究仅基于4个机构的1048名患者,可能存在样本选择偏差 开发一种非侵入性工具,用于早期预测乳腺癌新辅助化疗期间的残留癌症负担 乳腺癌患者 digital pathology breast cancer radiomics and deep learning multitask AI system magnetic resonance images 1048名乳腺癌患者(335名主要队列,713名外部验证队列)
1165 2025-05-11
A new era of psoriasis treatment: Drug repurposing through the lens of nanotechnology and machine learning
2025-Mar-30, International journal of pharmaceutics IF:5.3Q1
review 本文综述了通过纳米技术和机器学习重新利用药物治疗银屑病的新方法 结合纳米技术和人工智能(AI)重新利用现有药物治疗银屑病,克服传统疗法的挑战 药物重新利用方法尚处于早期阶段,可能存在潜在缺点 探索纳米技术和AI在银屑病治疗药物重新利用中的应用 银屑病治疗药物 machine learning 银屑病 machine learning, deep learning, nanotechnology NA NA NA
1166 2025-05-11
Characteristics of left ventricular dysfunction in repaired tetralogy of Fallot: A multi-institutional deep learning analysis of regional strain and dyssynchrony
2025-Mar-21, Journal of cardiovascular magnetic resonance : official journal of the Society for Cardiovascular Magnetic Resonance IF:4.2Q1
research paper 本研究利用深度学习合成应变(DLSS)算法,对修复后的法洛四联症(rTOF)患者的左心室功能障碍模式进行了多机构分析 首次使用深度学习算法DLSS自动测量区域左心室应变和不同步性,识别出rTOF患者左心室功能障碍的四种独特模式 研究为回顾性设计,样本量相对较小(198例患者和21例健康对照) 表征修复后法洛四联症患者左心室功能障碍的模式及其与右心室功能障碍和肺动脉瓣置换术进展的关系 修复后的法洛四联症患者和健康对照者 digital pathology cardiovascular disease cardiovascular magnetic resonance (CMR) imaging, deep learning synthetic strain (DLSS) deep learning algorithm MRI images 198例rTOF患者和21例健康对照
1167 2025-05-11
Artificial intelligence in medical imaging: From task-specific models to large-scale foundation models
2025-Mar-20, Chinese medical journal IF:7.5Q1
综述 本文综述了人工智能在医学影像中的应用,从特定任务模型到大规模基础模型的发展 探讨了基础模型在医学影像中的潜力及其与特定任务模型的互补性 基础模型目前主要关注分割和分类任务,尚未广泛应用于其他临床场景 分析人工智能在医学影像中的应用现状及未来发展方向 医学影像(包括X光、CT、MRI、超声、PET和病理影像) 医学影像分析 NA 深度学习 基础模型和特定任务模型 医学影像 NA
1168 2025-05-11
Surface-Enhanced Raman Spectroscopy for Biomedical Applications: Recent Advances and Future Challenges
2025-Mar-19, ACS applied materials & interfaces IF:8.3Q1
综述 本文总结了表面增强拉曼光谱(SERS)在生物医学应用中的最新进展和未来挑战 重点介绍了SERS基底、纳米标签、仪器和光谱分析方面的关键发展,包括胶体和固体SERS基底、具有内部间隙的正交拉曼报告基因和近红外II响应特性的SERS纳米标签,以及光学镊子、等离子体纳米孔和可穿戴传感器等新兴技术 讨论了SERS在临床转化中的挑战,特别是在深部组织体内传感和成像方面的困难 探讨SERS在生物医学领域的应用潜力,包括液体活检、代谢表型和细胞外囊泡诊断 SERS基底、纳米标签、仪器和光谱分析技术 生物医学工程 NA 表面增强拉曼光谱(SERS) 深度学习算法 光谱数据 NA
1169 2025-05-11
Portable cerebral blood flow monitor to detect large vessel occlusion in patients with suspected stroke
2025-Mar-17, Journal of neurointerventional surgery IF:4.5Q1
research paper 研究便携式脑血流监测仪在疑似卒中患者中检测大血管闭塞的能力 使用便携式Openwater光学血流监测仪结合深度学习模型,提高了大血管闭塞的检测敏感性和特异性 需要在独立测试集和院前环境中进一步验证 提高卒中患者大血管闭塞的早期检测率,以优化治疗流程和改善预后 疑似卒中患者 digital pathology cardiovascular disease 光学血流扫描 deep learning 光学血流波形数据 135名患者,其中52名(39%)有前循环大血管闭塞
1170 2025-05-11
Deep learning to quantify the pace of brain aging in relation to neurocognitive changes
2025-Mar-11, Proceedings of the National Academy of Sciences of the United States of America IF:9.4Q1
research paper 该研究利用深度学习技术通过纵向MRI量化大脑衰老速度,并探讨其与神经认知变化的关系 引入3D-CNN模型从纵向MRI数据中非侵入性地估计大脑衰老速度,显著优于横断面模型 研究主要关注认知正常个体和阿尔茨海默病患者,可能不适用于其他神经系统疾病 开发一种能够量化大脑衰老速度并反映神经认知变化的方法 认知正常成年人和阿尔茨海默病患者 digital pathology Alzheimer's disease MRI 3D-CNN image 训练集2,055名认知正常成年人,验证集1,304名认知正常成年人,独立队列包括104名认知正常成年人和140名阿尔茨海默病患者
1171 2025-05-11
ProCeSa: Contrast-Enhanced Structure-Aware Network for Thermostability Prediction with Protein Language Models
2025-Mar-10, Journal of chemical information and modeling IF:5.6Q1
研究论文 提出了一种名为ProCeSa的新型蛋白质对比增强结构感知网络,用于结合蛋白质语言模型(PLMs)提取的序列和结构信息来增强热稳定性预测 ProCeSa模型通过对比学习方案整合PLMs提取的序列和结构信息,无需原子结构数据即可预测蛋白质热稳定性 未明确提及具体局限性 提高蛋白质热稳定性预测的准确性 蛋白质序列及其热稳定性 蛋白质生物信息学 NA 对比学习、蛋白质语言模型(PLMs) ProCeSa(对比增强结构感知网络) 蛋白质序列数据 公开数据集(未明确提及具体样本数量)
1172 2025-05-11
A deep learning model for inter-fraction head and neck anatomical changes in proton therapy
2025-Mar-10, Physics in medicine and biology IF:3.3Q1
research paper 开发了一种基于概率深度学习的算法,用于预测头颈部患者在质子治疗中的分次间解剖变化 利用变分自编码器架构构建概率性每日解剖模型(DAM),能够生成可能的重复CT图像和相关掩码,并评估解剖变化的分布 数据集规模较小,仅包含93名患者(315对pCT-rCT),其中仅9名患者(27对)用于最终测试 评估深度学习模型在预测头颈部患者质子治疗期间解剖变化方面的性能 头颈部癌症患者 digital pathology head and neck cancer 深度学习 variational autoencoder CT图像 93名患者(315对pCT-rCT),其中9名患者(27对)用于测试
1173 2025-05-11
Large Model Era: Deep Learning in Osteoporosis Drug Discovery
2025-Mar-10, Journal of chemical information and modeling IF:5.6Q1
综述 本文综述了深度学习在骨质疏松药物发现中的应用,特别是大型模型的作用 探讨了大型模型在理解疾病机制和促进药物发现中的新方法 讨论了大型模型在骨质疏松药物发现中的优势和局限性 促进骨质疏松药物发现的研究 骨质疏松药物发现 机器学习 骨质疏松 深度学习 大型模型 NA NA
1174 2025-05-11
Self-supervised U-transformer network with mask reconstruction for metal artifact reduction
2025-Mar-10, Physics in medicine and biology IF:3.3Q1
research paper 提出了一种自监督U型transformer网络,通过掩模重建任务减少CT图像中的金属伪影 结合自监督掩模重建预训练任务和下游任务,利用Transformer的长程特征提取能力增强模型在金属伪影减少任务中的泛化能力 未提及具体在哪些真实场景下的性能表现 提升CT图像中金属伪影减少任务的模型泛化能力 CT图像中的金属伪影 computer vision NA self-supervised learning U-shaped transformer CT图像 未提及具体样本数量,但使用了未标记的真实伪影CT图像和标记的合成伪影CT图像
1175 2025-05-11
GLMCyp: A Deep Learning-Based Method for CYP450-Mediated Reaction Site Prediction
2025-Mar-10, Journal of chemical information and modeling IF:5.6Q1
研究论文 本文提出了一种基于深度学习的CYP450介导反应位点预测方法GLMCyp 结合2D分子图特征、3D Uni-Mol特征和ESM-2生成的CYP450蛋白特征,提高了预测准确性 未明确提及具体局限性 提高药物发现和开发效率,准确预测CYP450介导的反应位点 小分子化合物 机器学习 NA 深度学习 GLMCyp 分子图数据、蛋白质特征数据 EBoMD数据集
1176 2025-05-11
EEG-based recognition of hand movement and its parameter
2025-Mar-06, Journal of neural engineering IF:3.7Q2
研究论文 研究基于EEG信号的手部运动识别及其参数解码 提出了一种结合CNN和BiLSTM的端到端模型,用于分类和识别手部运动,并在实验中展示了高准确率 研究目前处于可行性研究阶段,跨被试分类的准确性尚未达到实际应用水平 探索基于EEG信号的手部运动识别技术,以提升脑机接口在医疗康复和人机协作中的应用 13名健康志愿者的EEG数据,涉及四种手部运动和两种力参数任务 脑机接口 NA EEG信号分析 CNN-BiLSTM EEG信号 13名健康志愿者
1177 2025-05-11
Deep learning models as learners for EEG-based functional brain networks
2025-Mar-06, Journal of neural engineering IF:3.7Q2
研究论文 探讨深度学习模型作为学习者,用于基于EEG的功能性脑网络分析 提出将功能脑网络构建直接嵌入深度学习模型作为特征提取模块,实现端到端学习 深度学习模型难以准确捕捉功能脑网络的固有拓扑结构 验证深度学习模型学习功能脑网络构建过程的能力 EEG数据和功能脑网络矩阵 机器学习 NA EEG分析 深度学习模型 EEG数据 两个公开可用的EEG数据集
1178 2025-05-11
Explainable paroxysmal atrial fibrillation diagnosis using an artificial intelligence-enabled electrocardiogram
2025-Mar, The Korean journal of internal medicine
研究论文 本研究开发了一种基于人工智能的心电图算法,用于检测正常窦性心律患者中的阵发性心房颤动早期迹象 使用深度学习模型预测心房颤动发作,并应用可解释AI技术揭示模型预测的依据 研究依赖于历史心电图数据,未进行前瞻性验证 开发可靠的人工智能算法用于早期检测心房颤动 318,321名患者的心电图数据 数字病理学 心血管疾病 12导联心电图 深度神经网络 心电图数据 552,372条心电图轨迹(来自318,321名患者)
1179 2025-05-11
MRI-Based Topology Deep Learning Model for Noninvasive Prediction of Microvascular Invasion and Assisting Prognostic Stratification in HCC
2025-Mar, Liver international : official journal of the International Association for the Study of the Liver IF:6.0Q1
研究论文 开发并验证了一种基于MRI拓扑的深度学习模型,用于术前预测肝细胞癌的微血管侵犯并辅助预后分层 结合拓扑学改进深度学习模型的预测性能和可解释性,开发了TopoCNN和TopoCNN+Clinic模型 研究为双中心回顾性研究,可能存在选择偏倚 术前预测肝细胞癌的微血管侵犯并辅助预后分层 肝细胞癌患者 数字病理学 肝细胞癌 MRI CNN, TopoCNN, TopoCNN+Clinic 图像 589名患者(其中292名经病理证实有微血管侵犯)
1180 2025-05-11
Enhanced water quality prediction model using advanced hybridized resampling alternating tree-based and deep learning algorithms
2025-Mar, Environmental science and pollution research international
研究论文 本研究开发了一种新型深度学习模型,结合双向LSTM网络和基于引导聚合的高级集成方法,用于预测河流系统中的关键水质参数 提出了结合双向LSTM和BA_AMT的混合模型,用于水质参数预测,并在Clackamas河上验证了其优越性能 虽然Bi-LSTM在整体精度上优于BA-AMT,但BA-AMT在捕捉极值方面表现更好,表明模型仍有优化空间 开发更精确的水质预测模型,以支持水资源管理和污染缓解规划 Clackamas河的水质参数(浊度和溶解氧) 机器学习 NA 深度学习、引导聚合、交替模型树 Bi-LSTM、BA_AMT 时间序列数据 NA
回到顶部