本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!
除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
101 | 2025-09-26 |
Automated Evaluation of Female Pelvic Organ Descent on Transperineal Ultrasound: Model Development and Validation
2025-Aug, International urogynecology journal
IF:1.8Q3
DOI:10.1007/s00192-025-06211-0
PMID:40580222
|
研究论文 | 开发并验证了一种基于多任务深度学习模型,用于自动化评估经会阴超声图像中的女性盆腔器官脱垂 | 首次将多任务深度学习模型应用于经会阴超声图像的自动化POP评估,通过Grad-CAM可视化技术验证模型关注区域与专家判断的一致性 | 研究样本仅来自单一时间段(2023年1-6月),未涉及外部验证集 | 开发自动化评估女性盆腔器官脱垂的深度学习模型 | 1340名女性患者的经会阴超声图像 | 医学影像分析 | 盆腔器官脱垂 | 深度学习,梯度加权类激活映射 | ResNet34+多任务全连接层 | 超声图像 | 1340例患者图像(1072训练/268验证) |
102 | 2025-09-26 |
Standardisation of an AI-based vocal fold assessment tool on a recurrent respiratory papillomatosis model
2025-Aug, Acta otorhinolaryngologica Italica : organo ufficiale della Societa italiana di otorinolaringologia e chirurgia cervico-facciale
IF:2.1Q2
DOI:10.14639/0392-100X-N2896
PMID:40985091
|
研究论文 | 本研究通过AI工具GC-AID定量评估复发性呼吸道乳头状瘤病(RRP)在声带上的病变范围 | 开发了首个基于AI的声带病变定量评估工具GC-AID,并在RRP模型中实现标准化应用 | 样本量较小(仅4名患者),属于案例研究性质 | 验证AI工具在RRP病变定量评估中的有效性 | 复发性呼吸道乳头状瘤病(RRP)患者的声带病变 | 数字病理 | 复发性呼吸道乳头状瘤病 | 人工智能深度学习 | 深度学习 | 医学图像(白光和窄带成像) | 4名RRP患者 |
103 | 2025-09-26 |
An explainable artificial intelligence handbook for psychologists: Methods, opportunities, and challenges
2025-Jul-31, Psychological methods
IF:7.6Q1
DOI:10.1037/met0000772
PMID:40742683
|
综述 | 为心理学研究者提供可解释人工智能方法的实用指南 | 系统梳理XAI方法在心理学研究中的应用框架,并通过模拟分析展示多重共线性对不同方法的影响 | 未涉及具体实证研究验证,主要侧重方法论介绍 | 帮助心理学研究者理解和使用可解释人工智能方法 | 心理学研究中的机器学习模型 | 机器学习 | NA | 可解释人工智能方法 | 多种模型无关解释方法 | 心理学研究数据 | NA |
104 | 2025-09-26 |
CPI-MIF: Compound-Protein Interaction Prediction with Multiview Information Fusion
2025-Jul-22, ACS omega
IF:3.7Q2
DOI:10.1021/acsomega.5c00113
PMID:40727722
|
研究论文 | 提出一种名为CPI-MIF的多视图信息融合模型,用于预测化合物与蛋白质的相互作用 | 首次从微观和宏观双视角融合化合物结构信息与蛋白质生物信息,通过多视图交互模块整合原子/氨基酸级别和序列级别的特征 | NA | 提高化合物-蛋白质相互作用预测的准确性和稳定性 | 化合物与蛋白质的相互作用关系 | 生物信息学 | NA | 多视图信息融合、深度学习 | CPI-MIF(多视图融合模型) | 化合物结构数据、蛋白质序列数据 | 三个真实世界数据集 |
105 | 2025-09-26 |
Reinforcement Learning-Based Nonlinear Model Predictive Controller for a Jacketed Reactor: A Machine Learning Concept Validation Using Jetson Orin
2025-Jul-22, ACS omega
IF:3.7Q2
DOI:10.1021/acsomega.5c03219
PMID:40727728
|
研究论文 | 本研究通过实验验证了结合机器学习和非线性模型预测控制的框架,用于跟踪间歇反应器的温度曲线 | 采用演员-评论家强化学习方法进行动态权重更新,将策略优化和值函数估计相结合来动态调节放热反应产生的热量 | NA | 开发并验证一种基于强化学习的非线性模型预测控制器,用于提高间歇反应器的温度控制性能 | 实验室规模的间歇反应器系统 | 机器学习 | NA | 演员-评论家强化学习(A2CRL)、非线性模型预测控制(NMPC)、循环神经网络(RNN) | RNN | 实验数据 | NA |
106 | 2025-09-26 |
Stacking Ensemble Neural Network for Chemical Safety Assessment: A Case Study of Thyroid Peroxidase and Natural Product Screening
2025-Jul-22, ACS omega
IF:3.7Q2
DOI:10.1021/acsomega.5c02188
PMID:40727784
|
研究论文 | 开发了一种新型堆叠集成神经网络模型,用于预测甲状腺过氧化物酶抑制活性 | 首次将卷积神经网络、双向长短期记忆网络和注意力机制与分子指纹结合,通过元决策模型增强学习概率 | 模型召回率相对较低(0.55),可能对某些TPO抑制剂的识别能力有限 | 提高化合物毒性筛查的预测准确性,特别是针对甲状腺过氧化物酶抑制活性的评估 | 化学化合物,特别是泰国本土蔬菜中的潜在有毒化合物 | 机器学习 | 甲状腺疾病 | 深度学习,分子指纹分析 | 堆叠集成神经网络(CNN + BiLSTM + 注意力机制) | 化学结构数据 | 包含外部测试集和泰国本土蔬菜化合物的验证数据 |
107 | 2025-09-26 |
MCST-AFN: A Multichannel Spatiotemporal Feature Adaptive Fusion Network Framework Based on a Low-Fidelity Molecular Dynamics Model
2025-Jul-22, ACS omega
IF:3.7Q2
DOI:10.1021/acsomega.5c01443
PMID:40727795
|
研究论文 | 提出基于低精度分子动力学模型的多通道时空特征自适应融合网络框架(MCST-AFN),用于提升分子性质预测性能 | 首次将深度学习分子动力学技术与多保真度学习策略结合,通过低精度模型生成多通道原子级嵌入并实现时空特征的自适应融合 | 未明确说明模型对特定分子类型的泛化能力及计算效率的具体量化指标 | 开发计算效率更高的分子表示学习方法以提升分子性质预测精度 | 分子动力学模拟数据与分子性质标注数据 | 机器学习 | NA | 分子动力学模拟、深度学习、多保真度学习 | 自适应融合网络、注意力机制 | 分子结构数据、时间序列数据 | 13个基准数据集(包含12个主要测试集和1个ESOL数据集) |
108 | 2025-09-26 |
UM-CPP: A Universal Model for Efficient Classification of Protein Particles in cryo-EM Micrographs with Feature Engineering
2025-Jul-15, ACS omega
IF:3.7Q2
DOI:10.1021/acsomega.5c01660
PMID:40686975
|
研究论文 | 提出一种融合特征工程与深度学习的冷冻电镜蛋白质颗粒分类通用模型UM-CPP | 首次将经典机器学习特征与先进深度学习技术结合,实现可解释性特征分析 | NA | 提升冷冻电镜图像中蛋白质颗粒检测的准确性与可解释性 | 冷冻电镜图像中的蛋白质颗粒和病毒结构 | 计算机视觉 | NA | 冷冻电镜技术 | 深度学习与特征工程混合模型 | 冷冻电镜显微图像 | NA |
109 | 2025-09-26 |
Enhancing Accuracy and Feature Insights in Hydration Free Energy Predictions for Small Molecules with Machine Learning
2025-Jul-15, ACS omega
IF:3.7Q2
DOI:10.1021/acsomega.5c04249
PMID:40687018
|
研究论文 | 利用机器学习技术提升小分子水合自由能预测精度并提取物理特征洞察 | 提出结合K近邻特征处理、集成建模和降维的轻量级机器学习方案,仅用二维特征在FreeSolv数据集上实现0.53 kcal/mol误差 | 未使用大型数据库进行预训练,仅基于二维分子特征 | 提高小分子溶剂化自由能预测精度并解析其物理决定因素 | 小分子化合物 | 机器学习 | NA | K近邻算法、集成学习、降维技术 | Ensemble modeling | 分子结构数据 | FreeSolv数据集 |
110 | 2025-09-26 |
A Deep-Learning-Aided Drug Screening Based on Visualization of a Hidden Layer as Chemical Space
2025-Jul-10, ACS medicinal chemistry letters
IF:3.5Q2
DOI:10.1021/acsmedchemlett.5c00124
PMID:40666467
|
研究论文 | 提出一种基于图卷积神经网络隐藏层可视化的药物筛选方法 | 通过可视化深度学习模型的隐藏层作为化学空间,实现从预测活性化合物中优先选择实验测试对象 | NA | 开发基于深度学习的药物筛选新方法 | 组蛋白去乙酰化酶抑制剂候选化合物 | 机器学习 | NA | 图卷积神经网络 | GCN | 化学结构数据 | NA |
111 | 2025-09-26 |
A survey on deep learning for polygenic risk scores
2025-Jul-02, Briefings in bioinformatics
IF:6.8Q1
DOI:10.1093/bib/bbaf373
PMID:40802796
|
综述 | 本文综述了深度学习在多基因风险评分(PRS)建模中的应用现状与方法分类 | 首次系统梳理深度学习神经网络在PRS建模中的架构分类,并指出序列架构、图神经网络和生物知识融合模型的潜力 | 缺乏统一数据集和表型的模型基准测试,深度学习PRS的可解释性存在挑战 | 探索深度学习神经网络如何改进多基因风险评分的预测性能 | 多基因风险评分(PRS)的深度学习建模方法 | 机器学习 | NA | 深度学习神经网络 | 序列架构、图神经网络、自编码器 | 遗传变异数据 | NA |
112 | 2025-09-26 |
Applications of deep learning in the analysis of optical coherence tomography images for glaucoma-related diagnostics
2025 Jul-Sep, Taiwan journal of ophthalmology
IF:1.0Q4
DOI:10.4103/tjo.TJO-D-24-00162
PMID:40995327
|
综述 | 本文综述了深度学习在青光眼相关光学相干断层扫描图像分析中的诊断应用 | 系统总结了深度学习在青光眼OCT图像分析中的多任务应用潜力,包括图像质量评估、视神经组织量化及疾病进展监测 | 现有技术的泛化性、公平性和可解释性仍需进一步研究验证 | 探讨深度学习技术在青光眼光学相干断层扫描图像分析中的临床应用价值 | 青光眼患者的视网膜神经纤维层和视神经组织OCT图像 | 医学影像分析 | 青光眼 | 光学相干断层扫描(OCT) | 深度神经网络(DNN) | 医学影像 | NA |
113 | 2025-09-26 |
Deep Learning to Localize Photoacoustic Sources in Three Dimensions: Theory and Implementation
2025-06, IEEE transactions on ultrasonics, ferroelectrics, and frequency control
DOI:10.1109/TUFFC.2025.3562313
PMID:40261767
|
研究论文 | 开发基于深度学习的3D光声点源定位系统,用于手术工具尖端的三维定位与追踪 | 首次实现基于目标检测和实例分割的3D光声点源定位,建立了点源位置、声速与波形形状的理论关系 | 仅通过模拟、体模和离体实验验证,尚未进行临床实时应用测试 | 实现手术工具尖端的三维精确定位与追踪 | 手术工具尖端(视为声学点源) | 医学影像分析 | NA | 光声成像 | 深度学习(目标检测、实例分割) | 光声通道数据帧 | 模拟数据4000帧、体模数据993帧、离体数据1983帧 |
114 | 2025-09-26 |
Automated Deep Learning Approach for Post-Operative Neonatal Pain Detection and Prediction through Physiological Signals
2025-Jun, Proceedings. IEEE International Symposium on Computer-Based Medical Systems
DOI:10.1109/cbms65348.2025.00164
PMID:40978767
|
研究论文 | 提出一种结合生理信号监测与深度学习的新方法,用于新生儿术后疼痛的自动检测和预测 | 首次开发早期疼痛检测方法,可在疼痛发作前5-10分钟预警,并创建干预时间窗口 | NA | 实现新生儿术后疼痛的自动检测和早期预测 | 新生儿重症监护室中的术后新生儿 | 计算机视觉/深度学习 | 新生儿术后疼痛 | 深度学习 | 深度学习模型 | 生理信号数据(心率、呼吸频率、血氧饱和度) | NA |
115 | 2025-09-26 |
Artificial intelligence automation of echocardiographic measurements
2025-Mar-19, medRxiv : the preprint server for health sciences
DOI:10.1101/2025.03.18.25324215
PMID:40166567
|
研究论文 | 开发并验证用于超声心动图参数自动测量的开源深度学习模型 | 首次提出可自动测量18种超声心动图参数的开放源代码深度学习模型,并在多中心数据验证中达到与专业技师相当的准确性 | 模型性能验证主要基于两家医疗中心数据,需要更广泛的外部验证 | 通过人工智能技术实现超声心动图测量的自动化,减轻临床医生工作负担 | 超声心动图图像和测量参数 | 医学影像分析 | 心血管疾病 | 深度学习语义分割 | 深度学习模型(EchoNet-Measurements) | 医学图像(超声心动图) | 155,215项研究中的877,983个超声心动图测量值,来自Cedars-Sinai医学中心和斯坦福医疗中心 |
116 | 2025-09-26 |
VASCilia (Vision Analysis StereoCilia): A Napari Plugin for Deep Learning-Based 3D Analysis of Cochlear Hair Cell Stereocilia Bundles
2025-Feb-15, bioRxiv : the preprint server for biology
DOI:10.1101/2024.06.17.599381
PMID:38948743
|
研究论文 | 开发了一个名为VASCilia的Napari插件,用于基于深度学习的耳蜗毛细胞立体纤毛束3D分析 | 首个专门针对耳蜗毛细胞立体纤毛束分析的开源深度学习工具套件,包含五个自动化分析模型 | NA | 开发自动化工具以解决耳蜗毛细胞立体纤毛束3D形态分析的挑战 | 耳蜗毛细胞立体纤毛束 | 计算机视觉 | 听力障碍 | 共聚焦显微镜、深度学习 | CNN(基于深度学习的分割和分类模型) | 3D图像 | 约55个3D图像堆栈,包含502个内毛细胞和1,703个外毛细胞纤毛束的3D标注 |
117 | 2025-09-26 |
Innovative laboratory techniques shaping cancer diagnosis and treatment in developing countries
2025-Feb-08, Discover oncology
IF:2.8Q2
DOI:10.1007/s12672-025-01877-w
PMID:39921787
|
综述 | 探讨实验室技术进步对发展中国家癌症诊断与治疗的影响 | 聚焦发展中国家特定挑战,系统整合人工智能与新型检测技术的应用前景 | 未涉及具体临床验证数据,主要基于技术现状分析 | 评估实验室技术在癌症诊疗中的应用潜力与实施障碍 | 发展中国家癌症诊疗体系 | 数字病理 | 癌症 | 液体活检、单细胞技术、流式细胞术、分子影像、免疫分析、分子诊断 | 深度学习、CNN | 多模态医学数据 | NA |
118 | 2025-09-26 |
Gaussianmorph: deformable medical image registration with Gaussian noise constraints
2025-Jan, Biomedical engineering letters
IF:3.2Q2
DOI:10.1007/s13534-024-00428-6
PMID:39781058
|
研究论文 | 提出一种基于级联VoxelMorph网络和噪声约束的医学图像配准方法GaussianMorph | 通过引入高斯噪声约束的级联网络结构和EF-encoder注意力模块提升配准精度 | NA | 提高医学图像配准的精度和性能 | 医学图像(脑部图像) | 医学图像处理 | NA | 深度学习图像配准 | 级联VoxelMorph CNN | 医学图像 | LPBA40和HBN数据集 |
119 | 2025-09-26 |
Relationships Between Familial Factors, Learning Motivation, Learning Approaches, and Cognitive Flexibility Among Vocational Education and Training Students
2025, The Journal of psychology
IF:2.2Q2
DOI:10.1080/00223980.2025.2456801
PMID:40184534
|
研究论文 | 本研究探讨家庭因素与职业教育学生认知灵活性之间的关系 | 首次在职业教育背景下建立家庭因素通过学习动机和学习方式影响认知灵活性的结构方程模型 | 采用横断面研究设计,无法推断因果关系;样本仅来自曼谷地区,存在地域局限性 | 探究家庭因素如何通过学习动机和学习方式影响职业教育学生的认知灵活性 | 泰国曼谷10所职业学校的557名职业教育学生 | 教育心理学 | NA | 结构方程模型分析 | 结构方程模型 | 问卷调查数据 | 557名职业教育学生(男性56.7%,女性43.3%;平均年龄18.41岁) |
120 | 2025-09-26 |
UPFP-SG: A New Benchmark for Unilateral Peripheral Facial Paralysis Severity Grading
2025, IEEE transactions on neural systems and rehabilitation engineering : a publication of the IEEE Engineering in Medicine and Biology Society
IF:4.8Q1
DOI:10.1109/TNSRE.2025.3608463
PMID:40928920
|
研究论文 | 提出用于单侧周围性面瘫严重程度分级的新基准UPFP-SG,包含数据集和分级方法 | 建立了首个公开的面瘫数据集并改进了主观评价系统,提出整合多特征的面神经分支区域分级方法 | NA | 开发自动化的面瘫严重程度分级系统以辅助临床诊断 | 单侧周围性面瘫患者的面部神经功能 | 计算机视觉 | 面瘫 | 深度学习 | 回归模型 | 面部图像数据 | NA |