深度学习在生物医药领域中的应用

本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!

如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!

Sample Image
添加微信请说明来意
Sample Image
微信赞赏

除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。

当前筛选条件: [分区不过滤] [IF不过滤] [发表日期不过滤] [清除筛选条件]
当前共找到 25256 篇文献,本页显示第 12141 - 12160 篇。
序号 推送日期 文章 类型 简述 创新点 不足 研究目的 研究对象 领域 病种 技术 模型 数据类型 样本量
12141 2024-12-08
SE-MAConvLSTM: A deep learning framework for short-term traffic flow prediction combining Squeeze-and-Excitation Network and Multi-Attention Convolutional LSTM Network
2024, PloS one IF:2.9Q1
研究论文 本文提出了一种结合挤压激励网络和多注意力卷积LSTM网络的深度学习框架,用于短期交通流量预测 设计了时空特征提取模块和多注意力模块,分别解决了时空相关性捕捉和不同时间间隔通道权重对预测结果的影响问题 NA 提高短期交通流量预测的准确性 交通流量数据 机器学习 NA 卷积神经网络 (CNN), 挤压激励网络 (SENet), 残差网络 (ResNet), 卷积LSTM网络 (ConvLSTM) SE-MAConvLSTM 交通流量数据 两个真实数据集
12142 2024-12-08
Exploiting the features of deep residual network with SVM classifier for human posture recognition
2024, PloS one IF:2.9Q1
研究论文 本文研究了基于深度残差网络和SVM分类器的人体姿态识别性能 提出了一种结合深度残差网络(ResNet-50)特征和支持向量机(SVM)分类器的混合架构,显著提高了人体姿态识别的准确性 NA 提高人体姿态识别的准确性和效率 人体姿态识别 计算机视觉 NA 深度学习 ResNet-50, SVM 图像 三个数据集:Multi-Camera Fall (MCF) 使用四种姿态,UR Fall detection (URFD) 使用四种姿态,UP-Fall detection (UPFD) 使用四种姿态
12143 2024-12-08
Value of radiomics and deep learning feature fusion models based on dce-mri in distinguishing sinonasal squamous cell carcinoma from lymphoma
2024, Frontiers in oncology IF:3.5Q2
研究论文 本研究旨在构建和验证基于动态对比增强(DCE)成像的机器学习和深度学习特征模型,并评估放射组学和深度学习特征融合模型在区分鼻窦鳞状细胞癌和淋巴瘤中的临床价值 本研究创新性地结合了放射组学和深度学习特征,构建了一个融合模型,显著提高了区分鼻窦鳞状细胞癌和淋巴瘤的准确性 本研究为回顾性分析,样本量有限,未来需要更大规模的前瞻性研究来验证结果 开发一种能够在术前精确区分鼻窦鳞状细胞癌和淋巴瘤的方法,以制定合适的治疗方案 鼻窦鳞状细胞癌和鼻窦淋巴瘤 机器学习 鼻窦癌 动态对比增强磁共振成像(DCE-MRI) 深度学习模型(DL)和机器学习模型(ML) 图像 90例鼻窦肿瘤患者,包括50例鼻窦鳞状细胞癌和40例鼻窦淋巴瘤
12144 2024-12-08
A transformer-based deep learning approach for fairly predicting post-liver transplant risk factors
2024-01, Journal of biomedical informatics IF:4.0Q2
研究论文 本文提出了一种基于Transformer的深度学习模型,用于公平预测肝移植后的风险因素 本文创新性地将肝移植后的风险预测问题转化为多任务学习问题,并提出了一种新的公平性算法,确保不同子群体之间的预测公平性 NA 解决肝移植中的两个主要挑战:找到最佳匹配的患者和确保不同子群体之间的移植公平性 肝移植后的风险因素,如心血管疾病和慢性排斥等 机器学习 NA 深度学习 Transformer 电子健康记录 160,360名肝移植患者的数据,包括人口统计信息、临床变量和实验室值
12145 2024-12-08
A newcomer's guide to deep learning for inverse design in nano-photonics
2023-Dec, Nanophotonics (Berlin, Germany)
review 本文为纳米光子学领域的新手提供了一个关于深度学习在逆向设计中应用的综合指南 本文填补了针对无深度学习经验新手的综合教程的空白,并提供了详细的Python笔记本示例以促进理解和实施 本文主要关注纳米光子学领域的研究人员,尽管对其他领域使用深度学习的研究人员也有参考价值 旨在为新手提供应用深度学习解决纳米光子学逆向设计问题的实用指导 纳米光子学设备的逆向设计 纳米光子学 NA 深度学习 NA NA NA
12146 2024-12-08
Severe aortic stenosis detection by deep learning applied to echocardiography
2023-11-14, European heart journal IF:37.6Q1
研究论文 本研究开发并验证了一种基于深度学习的模型,用于通过二维超声心动图视频检测严重主动脉瓣狭窄 利用自监督对比预训练的三维卷积神经网络模型,无需多普勒成像即可识别严重主动脉瓣狭窄 NA 开发和验证一种自动化方法,用于通过单一视角的二维超声心动图检测严重主动脉瓣狭窄 严重主动脉瓣狭窄的早期诊断 计算机视觉 心血管疾病 深度学习 三维卷积神经网络 视频 训练集包含5257个研究(17570个视频),验证集包含2040个连续研究,以及来自加利福尼亚和新英格兰其他医院的4226和3072个研究
12147 2024-12-08
Optimizing diffuse optical imaging for breast tissues with a dual-encoder neural network to preserve small structural information and fine features
2023-Nov, Journal of medical imaging (Bellingham, Wash.)
研究论文 研究提出了一种双编码器神经网络用于优化乳腺组织的漫射光学成像,以保留微小的结构信息和精细特征 本研究的创新点在于提出了一种双编码器网络,通过增加一个平行分支直接从基础源获取信号信息,从而在不降低或与背景融合的情况下定位包含物 NA 研究旨在探讨一种双编码器深度学习模型,用于在漫射光学成像中成功检测不同尺寸肿瘤 乳腺组织的漫射光学成像 计算机视觉 NA 漫射光学成像 双编码器神经网络 图像 模拟和幻影测试数据集
12148 2024-12-08
RECOVER identifies synergistic drug combinations in vitro through sequential model optimization
2023-10-23, Cell reports methods IF:4.3Q2
研究论文 本文通过深度学习模型优化,识别体外协同药物组合 采用顺序模型优化方法,通过深度学习模型选择富集协同作用的药物组合,并发现药物嵌入开始反映生物机制 药物组合数据库偏向于协同药物,结果在分布外不具有普遍性 识别体外协同药物组合 小分子药物组合 机器学习 癌症 深度学习 深度学习模型 药物组合数据 涉及5轮实验,评估了约5%的总搜索空间
12149 2024-12-08
Human emotion recognition with a microcomb-enabled integrated optical neural network
2023-Oct, Nanophotonics (Berlin, Germany)
研究论文 本文提出了一种基于微梳的集成光学神经网络(MIONN),用于以光速和低功耗进行人类情感识别 创新点在于利用微梳生成的频率通道对大规模张量数据进行独立编码,并通过并行计算实现高速低功耗的情感识别 NA 开发一种高速且节能的神经形态计算硬件,用于具有情感交互能力的深度学习模型 人类情感识别 机器学习 NA 微梳技术 光学神经网络 张量数据 在盲测集上实现了78.5%的准确率,成功识别了六种基本人类情感
12150 2024-12-08
Diffusion probabilistic model based accurate and high-degree-of-freedom metasurface inverse design
2023-Oct, Nanophotonics (Berlin, Germany)
研究论文 提出了一种基于扩散概率理论的元表面逆设计方法 通过学习将原始结构转化为高斯分布的马尔可夫过程,逐步去除噪声并生成符合S参数条件的高自由度元原子,避免了GAN对抗训练过程中的模型不稳定性 未提及 改进元表面逆设计方法,提高生成效率和质量 元表面及其逆设计 计算机视觉 NA 扩散概率模型 扩散概率模型 S参数 未提及
12151 2024-12-08
Deep representation learning identifies associations between physical activity and sleep patterns during pregnancy and prematurity
2023-Sep-28, NPJ digital medicine IF:12.4Q1
研究论文 研究利用深度学习时间序列分类架构,分析孕妇的体力活动和睡眠模式与早产之间的关系 开发了一种新的深度学习时间序列分类架构,并结合无监督聚类、模型误差分析、特征归因和自动活动分析等解释性算法,提高了模型对妊娠进展的预测能力 研究主要基于穿戴设备收集的数据,可能存在数据收集和处理的局限性 研究体力活动和睡眠模式与早产之间的关系,并开发预测模型以支持临床决策 孕妇的体力活动和睡眠模式 机器学习 妊娠相关疾病 深度学习 时间序列分类架构 时间序列数据 1083名患者,共收集了181,944小时的数据
12152 2024-12-07
Deep learning empowering design for selective solar absorber
2023-Sep, Nanophotonics (Berlin, Germany)
研究论文 本文开发了一种结合深度学习和多目标双重退火算法的高性能设计范式,用于优化多层纳米结构以最大化太阳能光谱吸收和最小化红外辐射 本文首次将深度学习与多目标双重退火算法结合,用于设计高性能的选择性太阳能吸收器 实验测量的红外辐射平均发射率略高于计算值,表明实际性能与理论设计之间存在一定差距 开发一种高效的设计方法,用于优化太阳能吸收器的性能 多层纳米结构的选择性太阳能吸收器 NA NA 深度学习 NA NA NA
12153 2024-12-08
Progressively refined deep joint registration segmentation (ProRSeg) of gastrointestinal organs at risk: Application to MRI and cone-beam CT
2023-Aug, Medical physics IF:3.2Q1
研究论文 本文开发了一种名为ProRSeg的深度网络,用于胃肠道器官的风险区域的联合注册和分割,并评估其在MRI和锥束CT上的应用 ProRSeg网络在MRI和CBCT上的分割和注册精度显著高于其他方法 研究缺乏独立的测试和基准幻影数据集来测量剂量累积的准确性 开发一种能够准确分割和注册胃肠道器官风险区域的深度学习网络,并评估其在放射治疗中的应用 胃肠道器官风险区域,包括胃、十二指肠、大肠和小肠 计算机视觉 胰腺癌 深度学习 ProRSeg MRI和CBCT图像 110张T2加权MRI图像和80张CBCT图像
12154 2024-12-08
Deep learning-based vortex decomposition and switching based on fiber vector eigenmodes
2023-Jul, Nanophotonics (Berlin, Germany)
研究论文 本文展示了基于深度学习的涡旋模式分解和切换技术,通过重建多视角投影强度分布图像来实现圆柱矢量(CV)和轨道角动量(OAM)模式的分解 首次实现了基于深度学习的CV和OAM模式分解,并展示了高效的模态系数和光场分布恢复 NA 实现对圆柱矢量和轨道角动量模式的智能生成和精确控制 圆柱矢量(CV)和轨道角动量(OAM)模式 光学 NA 深度学习 随机并行梯度下降(SPGD)算法 图像 NA
12155 2024-12-08
Counting and mapping of subwavelength nanoparticles from a single shot scattering pattern
2023-Jul, Nanophotonics (Berlin, Germany)
研究论文 本文介绍了一种基于深度学习的超分辨率单次光学方法,用于计数和映射表面上的亚波长颗粒 提出了一种基于深度学习的超分辨率单次光学方法,用于计数和映射亚波长颗粒的位置 NA 开发一种用于计数和映射亚波长颗粒的新型光学方法 亚波长颗粒的计数和位置映射 计算机视觉 NA 深度学习 NA 图像 4 × 4 网格上的颗粒集合
12156 2024-12-08
Multimodal deep learning methods enhance genomic prediction of wheat breeding
2023-05-02, G3 (Bethesda, Md.)
研究论文 本文比较了一种新的深度学习方法与传统基因组预测模型在小麦育种中的应用 本文首次将深度学习方法应用于基因组与表型组(成像)相结合的基因组预测中 深度学习方法在某些年份的基因组预测准确性略低于GBLUP模型 提高小麦育种中未观测表型的基因组预测准确性 小麦的基因组数据和表型数据 机器学习 NA 深度学习 深度学习神经网络 基因组数据和表型数据 两个小麦数据集(DS1和DS2),DS1包含基因组和表型数据,DS2包含3年、2个环境(干旱和灌溉)和2-4个性状的基因组数据
12157 2024-12-08
Inverse design in quantum nanophotonics: combining local-density-of-states and deep learning
2023-May, Nanophotonics (Berlin, Germany)
研究论文 本文介绍了一种在量子纳米光子学中结合局部态密度和深度学习的逆向设计框架 本文首次将深度学习引入量子光学领域,用于推进量子器件设计,并提供了一个新的平台,用于在没有直接结构与功能特性联系的复杂问题中设计纳米光子结构 NA 推进量子器件设计 量子纳米光子学中的自发辐射和纠缠问题 量子光学 NA 深度学习 全连接神经网络 局部态密度 单个多层壳金属纳米粒子系统中的量子发射器
12158 2024-12-08
Deep learning-enabled analysis of medical images identifies cardiac sphericity as an early marker of cardiomyopathy and related outcomes
2023-04-14, Med (New York, N.Y.)
研究论文 利用深度学习技术分析心脏磁共振图像,识别心脏球形度作为心肌病及相关结果的早期标志 首次使用深度学习技术测量左心室球形指数,并将其与心肌病和心房颤动的风险关联起来 研究排除了左心室大小或收缩功能异常的受试者,可能影响结果的普适性 探讨心脏形状变化对心血管风险和病理生理学的理解 左心室球形指数与心肌病和心房颤动的关系 计算机视觉 心血管疾病 深度学习 NA 图像 38,897名受试者
12159 2024-12-08
Diffractive interconnects: all-optical permutation operation using diffractive networks
2023-Mar, Nanophotonics (Berlin, Germany)
研究论文 本文介绍了通过深度学习设计的衍射光学网络,能够在全光条件下执行排列操作,并扩展到数十万条输入输出连接 首次实验展示了在太赫兹频段运行的衍射排列网络,并设计了抗对准误差的衍射设计 更深的衍射网络设计在物理对准和输出衍射效率方面存在实际挑战 开发基于衍射光学网络的全光排列操作平台 衍射光学网络的排列操作性能 光学 NA 衍射光学 NA NA NA
12160 2024-12-08
Multi-task topology optimization of photonic devices in low-dimensional Fourier domain via deep learning
2023-Mar, Nanophotonics (Berlin, Germany)
研究论文 本文提出了一种基于深度神经网络(DNN)的低维傅里叶域多任务拓扑优化方法,用于光子器件的设计 通过在低维傅里叶域中使用DNN进行拓扑优化,减少了设计自由度,加速了训练过程,并实现了多任务优化 NA 开发一种高效的多任务光子器件优化方法 光子器件,包括波长滤波器和波导耦合单光子源 计算机视觉 NA 深度学习 深度神经网络(DNN) 光学响应 NA
回到顶部