本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!
除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1201 | 2025-09-26 |
Artificial intelligence automation of echocardiographic measurements
2025-Mar-19, medRxiv : the preprint server for health sciences
DOI:10.1101/2025.03.18.25324215
PMID:40166567
|
研究论文 | 开发并验证用于超声心动图参数自动测量的开源深度学习模型 | 首次提出可自动测量18种超声心动图参数的开放源代码深度学习模型,并在多中心数据验证中达到与专业技师相当的准确性 | 模型性能验证主要基于两家医疗中心数据,需要更广泛的外部验证 | 通过人工智能技术实现超声心动图测量的自动化,减轻临床医生工作负担 | 超声心动图图像和测量参数 | 医学影像分析 | 心血管疾病 | 深度学习语义分割 | 深度学习模型(EchoNet-Measurements) | 医学图像(超声心动图) | 155,215项研究中的877,983个超声心动图测量值,来自Cedars-Sinai医学中心和斯坦福医疗中心 |
1202 | 2025-09-26 |
VASCilia (Vision Analysis StereoCilia): A Napari Plugin for Deep Learning-Based 3D Analysis of Cochlear Hair Cell Stereocilia Bundles
2025-Feb-15, bioRxiv : the preprint server for biology
DOI:10.1101/2024.06.17.599381
PMID:38948743
|
研究论文 | 开发了一个名为VASCilia的Napari插件,用于基于深度学习的耳蜗毛细胞立体纤毛束3D分析 | 首个专门针对耳蜗毛细胞立体纤毛束分析的开源深度学习工具套件,包含五个自动化分析模型 | NA | 开发自动化工具以解决耳蜗毛细胞立体纤毛束3D形态分析的挑战 | 耳蜗毛细胞立体纤毛束 | 计算机视觉 | 听力障碍 | 共聚焦显微镜、深度学习 | CNN(基于深度学习的分割和分类模型) | 3D图像 | 约55个3D图像堆栈,包含502个内毛细胞和1,703个外毛细胞纤毛束的3D标注 |
1203 | 2025-09-26 |
Innovative laboratory techniques shaping cancer diagnosis and treatment in developing countries
2025-Feb-08, Discover oncology
IF:2.8Q2
DOI:10.1007/s12672-025-01877-w
PMID:39921787
|
综述 | 探讨实验室技术进步对发展中国家癌症诊断与治疗的影响 | 聚焦发展中国家特定挑战,系统整合人工智能与新型检测技术的应用前景 | 未涉及具体临床验证数据,主要基于技术现状分析 | 评估实验室技术在癌症诊疗中的应用潜力与实施障碍 | 发展中国家癌症诊疗体系 | 数字病理 | 癌症 | 液体活检、单细胞技术、流式细胞术、分子影像、免疫分析、分子诊断 | 深度学习、CNN | 多模态医学数据 | NA |
1204 | 2025-09-26 |
Gaussianmorph: deformable medical image registration with Gaussian noise constraints
2025-Jan, Biomedical engineering letters
IF:3.2Q2
DOI:10.1007/s13534-024-00428-6
PMID:39781058
|
研究论文 | 提出一种基于级联VoxelMorph网络和噪声约束的医学图像配准方法GaussianMorph | 通过引入高斯噪声约束的级联网络结构和EF-encoder注意力模块提升配准精度 | NA | 提高医学图像配准的精度和性能 | 医学图像(脑部图像) | 医学图像处理 | NA | 深度学习图像配准 | 级联VoxelMorph CNN | 医学图像 | LPBA40和HBN数据集 |
1205 | 2025-09-26 |
Relationships Between Familial Factors, Learning Motivation, Learning Approaches, and Cognitive Flexibility Among Vocational Education and Training Students
2025, The Journal of psychology
IF:2.2Q2
DOI:10.1080/00223980.2025.2456801
PMID:40184534
|
研究论文 | 本研究探讨家庭因素与职业教育学生认知灵活性之间的关系 | 首次在职业教育背景下建立家庭因素通过学习动机和学习方式影响认知灵活性的结构方程模型 | 采用横断面研究设计,无法推断因果关系;样本仅来自曼谷地区,存在地域局限性 | 探究家庭因素如何通过学习动机和学习方式影响职业教育学生的认知灵活性 | 泰国曼谷10所职业学校的557名职业教育学生 | 教育心理学 | NA | 结构方程模型分析 | 结构方程模型 | 问卷调查数据 | 557名职业教育学生(男性56.7%,女性43.3%;平均年龄18.41岁) |
1206 | 2025-09-26 |
UPFP-SG: A New Benchmark for Unilateral Peripheral Facial Paralysis Severity Grading
2025, IEEE transactions on neural systems and rehabilitation engineering : a publication of the IEEE Engineering in Medicine and Biology Society
IF:4.8Q1
DOI:10.1109/TNSRE.2025.3608463
PMID:40928920
|
研究论文 | 提出用于单侧周围性面瘫严重程度分级的新基准UPFP-SG,包含数据集和分级方法 | 建立了首个公开的面瘫数据集并改进了主观评价系统,提出整合多特征的面神经分支区域分级方法 | NA | 开发自动化的面瘫严重程度分级系统以辅助临床诊断 | 单侧周围性面瘫患者的面部神经功能 | 计算机视觉 | 面瘫 | 深度学习 | 回归模型 | 面部图像数据 | NA |
1207 | 2025-09-26 |
Harnessing interpretable novel combination of GloVe embedding with deep CNN-BiLSTM neural network for fake news detection
2025, PloS one
IF:2.9Q1
DOI:10.1371/journal.pone.0330154
PMID:40982565
|
研究论文 | 本研究提出了一种结合GloVe嵌入与深度CNN-BiLSTM神经网络的可解释性假新闻检测方法 | 首次将GloVe嵌入与CNN-BiLSTM神经网络结合,并集成可解释人工智能技术提升模型透明度 | 仅使用单一公开数据集进行验证,未涉及多语言或多领域假新闻检测 | 开发高精度且可解释的假新闻检测系统 | 假新闻文本数据 | 自然语言处理 | NA | GloVe嵌入、FastText嵌入、TF-IDF、LIME可解释性分析 | CNN-BiLSTM、Bi-LSTM、逻辑回归 | 文本 | 公开假新闻数据集(具体数量未提及) |
1208 | 2025-09-26 |
CT-Based 2.5D Deep Learning-Multi-Instance Learning for Predicting Early Recurrence of Hepatocellular Carcinoma and Correlating with Recurrence-Related Pathological Indicators
2025, Journal of hepatocellular carcinoma
IF:4.2Q2
DOI:10.2147/JHC.S541402
PMID:40984863
|
研究论文 | 基于CT动脉期图像开发2.5D深度学习-多示例学习模型,用于预测肝细胞癌早期复发并分析模型特征的生物学意义 | 首次将2.5D DL-MIL模型应用于HCC早期复发预测,并验证了MIL特征与微血管侵犯、Ki-67表达等病理指标的相关性 | 回顾性研究且样本量有限(191例患者),需要更大规模的前瞻性验证 | 评估2.5D DL-MIL模型在预测肝细胞癌早期复发方面的优势 | 191例肝细胞癌术后患者(79例早期复发组,112例非早期复发组) | 数字病理 | 肝细胞癌 | CT动脉期成像、SHAP分析 | 2.5D深度学习-多示例学习(2.5D DL-MIL)、放射组学模型、临床模型 | CT医学图像、临床数据 | 191例HCC患者(训练集133例,验证集58例) |
1209 | 2025-09-26 |
A deep learning/machine learning approach for anomaly based network intrusion detection
2025, Frontiers in artificial intelligence
IF:3.0Q2
DOI:10.3389/frai.2025.1625891
PMID:40995028
|
研究论文 | 提出一种融合多种机器学习和深度学习算法的混合异常网络入侵检测系统 | 首次整合XGBoost、随机森林、图神经网络、LSTM和自编码器等多种算法,并采用加权软投票集成策略 | NA | 开发能够检测已知和新兴网络攻击的高级入侵检测系统 | 网络流量数据 | 机器学习 | NA | SMOTE过采样技术、5折交叉验证 | XGBoost、Random Forest、GNN、LSTM、Autoencoders | 网络流量记录 | 超过560万条网络流量记录 |
1210 | 2025-09-26 |
Massively parallel characterization of regulatory elements in the developing human cortex
2024-05-24, Science (New York, N.Y.)
DOI:10.1126/science.adh0559
PMID:38781390
|
研究论文 | 通过大规模平行报告实验系统解析人类发育期大脑皮层中基因调控元件的功能 | 首次在人类原代皮层细胞和脑类器官中并行检测10万多个开放染色质区域的顺式调控活性,并利用深度学习解码增强子活性的序列基础 | NA | 建立人类神经元发育过程中功能性基因调控元件和变异的综合目录 | 人类中期妊娠皮层原代细胞和脑类器官 | 基因组学 | NA | 大规模平行报告实验(MPRA)、深度学习 | 深度学习模型 | 基因组序列数据 | 102,767个开放染色质区域 |
1211 | 2025-09-26 |
A deep learning method for comparing Bayesian hierarchical models
2024-May-06, Psychological methods
IF:7.6Q1
DOI:10.1037/met0000645
PMID:38709626
|
研究论文 | 提出一种基于深度学习的贝叶斯分层模型比较方法 | 首次将深度学习应用于贝叶斯分层模型的比较,实现了摊销推理并支持概率程序实例化的任意分层模型 | 未明确说明方法在超大规模模型或特定类型分层结构中的适用性限制 | 解决贝叶斯模型比较在分层模型中因高维嵌套参数结构导致的难以处理问题 | 贝叶斯分层模型和证据积累模型 | 机器学习 | NA | 深度学习、摊销推理、迁移学习 | 深度学习模型 | 模型参数和概率程序 | 通过系列验证研究进行基准测试,并应用四个先前难以处理的证据积累模型 |
1212 | 2025-09-26 |
Artificial Intelligence-Triaged 3-Dimensional Pathology to Improve Detection of Esophageal Neoplasia While Reducing Pathologist Workloads
2023-12, Modern pathology : an official journal of the United States and Canadian Academy of Pathology, Inc
IF:7.1Q1
DOI:10.1016/j.modpat.2023.100322
PMID:37657711
|
研究论文 | 提出基于深度学习的三维病理人工智能分诊方法,用于提高食管肿瘤检测灵敏度并减少病理医生工作量 | 首次开发能够自动识别三维病理数据集中最关键二维切片的AI分诊系统,通过生成三维肿瘤风险热图实现图像优先级排序 | NA | 改善巴雷特食管患者食管肿瘤的早期检测效率 | 食管活检组织样本 | 数字病理 | 食管肿瘤 | 三维病理成像 | 深度学习 | 三维病理图像 | 临床验证研究中涉及的食管活检样本(具体数量未明确说明) |
1213 | 2025-09-26 |
Pathomic Features Reveal Immune and Molecular Evolution From Lung Preneoplasia to Invasive Adenocarcinoma
2023-12, Modern pathology : an official journal of the United States and Canadian Academy of Pathology, Inc
IF:7.1Q1
DOI:10.1016/j.modpat.2023.100326
PMID:37678674
|
研究论文 | 利用深度学习技术从H&E病理图像中提取病理组学特征,揭示肺腺癌从前驱病变到浸润性腺癌的免疫与分子演化规律 | 首次通过病理组学特征量化肺前驱病变演化过程中的上皮细胞异型性增加和淋巴细胞减少趋势,与昂贵分子检测结果一致 | 样本量相对有限(98例患者),仅基于H&E染色图像分析 | 解析肺腺癌从前驱病变到浸润癌的演化机制 | 肺组织病理图像(正常组织、AAH、AIS、MIA和ADC病变) | 数字病理 | 肺癌 | 深度学习、人工智能、H&E染色病理图像分析 | 深度学习模型 | 病理图像 | 98例患者、162张切片、669个感兴趣区域(含143正常、129AAH、94AIS、98MIA、205ADC) |
1214 | 2025-09-26 |
Can artificial intelligence help decision-making in arthroscopy? Part 2: The IA-RTRHO model - a decision-making aid for long head of the biceps diagnoses in small rotator cuff tears
2023-12, Orthopaedics & traumatology, surgery & research : OTSR
DOI:10.1016/j.otsr.2023.103652
PMID:37380127
|
研究论文 | 本研究开发了一种基于卷积神经网络和临床数据的AI模型,用于辅助关节镜手术中肱二头肌长头腱的健康诊断 | 首次评估AI分析关节镜图像的能力,结合图像与临床数据构建诊断模型 | 需要增加输入数据以减少过拟合,结果需进一步研究验证 | 开发能够诊断肱二头肌长头腱健康状态的AI决策辅助模型 | 199名患者的关节镜图像及临床数据 | 计算机视觉 | 骨科疾病 | 深度学习、迁移学习 | CNN(Inception V3)、MLP、Mask R-CNN | 视频图像、临床数据 | 199名患者 |
1215 | 2025-09-26 |
Predicting Lymph Node Metastasis From Primary Cervical Squamous Cell Carcinoma Based on Deep Learning in Histopathologic Images
2023-12, Modern pathology : an official journal of the United States and Canadian Academy of Pathology, Inc
IF:7.1Q1
DOI:10.1016/j.modpat.2023.100316
PMID:37634868
|
研究论文 | 基于宫颈鳞癌组织病理图像开发深度学习模型预测淋巴结转移状态 | 首次采用多尺度注意力机制的多示例深度学习框架,仅通过原发灶H&E染色切片实现淋巴结转移预测 | 需通过宫颈活检标本和多中心大样本数据验证实际价值 | 开发术前评估宫颈癌淋巴结状态的深度学习模型 | 宫颈鳞状细胞癌患者 | 数字病理 | 宫颈癌 | H&E染色全玻片成像 | 多示例深度卷积神经网络(基于多尺度注意力机制) | 病理图像 | 564名患者的1524张全玻片图像(内部数据集405例,外部验证159例) |
1216 | 2025-09-26 |
A Novel Deep Learning Algorithm for Human Papillomavirus Infection Prediction in Head and Neck Cancers Using Routine Histology Images
2023-12, Modern pathology : an official journal of the United States and Canadian Academy of Pathology, Inc
IF:7.1Q1
DOI:10.1016/j.modpat.2023.100320
PMID:37652399
|
研究论文 | 提出一种基于常规H&E染色切片图像的深度学习算法,用于头颈部鳞状细胞癌中HPV感染状态的预测 | 首次开发仅使用常规H&E染色全切片图像即可实现HPV感染状态预测的深度学习流程,并达到最先进的检测性能 | NA | 开发头颈部鳞状细胞癌中HPV感染状态的自动预测方法 | 头颈部鳞状细胞癌患者的组织切片图像 | 数字病理学 | 头颈部癌症 | 全切片图像分析 | 深度学习算法 | 图像 | NA |
1217 | 2025-09-26 |
Automating Ground Truth Annotations for Gland Segmentation Through Immunohistochemistry
2023-12, Modern pathology : an official journal of the United States and Canadian Academy of Pathology, Inc
IF:7.1Q1
DOI:10.1016/j.modpat.2023.100331
PMID:37716506
|
研究论文 | 提出一种通过免疫组织化学自动生成结肠腺体分割真值标注的方法 | 利用IHC标记自动生成H&E切片中的腺体标注,替代耗时的手动标注 | 方法依赖IHC与H&E图像的精准配准,且需要特定标记物的染色 | 开发自动化的腺体分割真值标注生成技术 | 结肠活检标本中的腺体组织 | 数字病理学 | 结肠癌/炎症性肠病 | 免疫组织化学、深度学习 | 深度学习模型 | 组织病理图像 | 内部保留活检标本集+2个公共数据集 |
1218 | 2025-09-26 |
Deep Learning for Predicting Effect of Neoadjuvant Therapies in Non-Small Cell Lung Carcinomas With Histologic Images
2023-11, Modern pathology : an official journal of the United States and Canadian Academy of Pathology, Inc
IF:7.1Q1
DOI:10.1016/j.modpat.2023.100302
PMID:37580019
|
研究论文 | 开发基于深度学习的模型,通过组织病理图像预测非小细胞肺癌新辅助治疗的主要病理反应 | 提出可自适应加权多尺度卷积神经网络的多尺度补丁模型,首次实现从H&E染色切片图像自动评估MPR | 样本量相对有限(125例),需更大规模数据验证泛化能力 | 开发临床可用的深度学习模型以辅助病理学家评估新辅助治疗效果 | 接受新辅助治疗后切除的非小细胞肺癌组织样本 | 数字病理 | 肺癌 | 全幻灯片成像,H&E染色 | 多尺度CNN | 病理图像 | 125例非小细胞肺癌病例,261张H&E染色切片 |
1219 | 2025-09-26 |
Learning from prepandemic data to forecast viral escape
2023-10, Nature
IF:50.5Q1
DOI:10.1038/s41586-023-06617-0
PMID:37821700
|
研究论文 | 开发了可预测病毒免疫逃逸突变的计算框架EVEscape | 结合深度学习模型与生物物理信息,可在疫情早期无需实验数据即可预测病毒变异 | NA | 建立通用计算框架以预测病毒免疫逃逸突变 | SARS-CoV-2、流感、HIV、拉沙病毒、尼帕病毒等具有大流行潜力的病毒 | 机器学习 | 传染病 | 深度学习、生物物理分析 | 深度学习模型 | 病毒序列数据、结构信息 | 使用2020年前可用的历史序列数据进行训练 |
1220 | 2025-09-26 |
Predicting Prostate Cancer Molecular Subtype With Deep Learning on Histopathologic Images
2023-10, Modern pathology : an official journal of the United States and Canadian Academy of Pathology, Inc
IF:7.1Q1
DOI:10.1016/j.modpat.2023.100247
PMID:37307876
|
研究论文 | 开发基于深度学习的算法通过组织病理图像预测前列腺癌分子亚型 | 首次提出基于Transformer的分层架构,使用H&E染色全切片图像预测ERG融合和PTEN缺失 | 样本量相对有限且需要进一步验证临床适用性 | 利用深度学习技术从病理图像中筛查前列腺癌基因组变异 | 前列腺癌患者的组织切片样本 | 数字病理 | 前列腺癌 | H&E染色全切片成像 | Transformer-based hierarchical architecture | 图像 | 训练队列:224例(ERG)/205例(PTEN);验证队列:多个独立队列共1000+全切片图像 |