深度学习在生物医药领域的应用

本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新(使用关键词“['deep learning']”过滤),已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!

如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!

Sample Image
添加微信请说明来意
Sample Image
微信赞赏

除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价19.9元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。

当前筛选条件: [分区不过滤] [IF不过滤] [发表日期不过滤] [清除筛选条件]
当前共找到 32373 篇文献,本页显示第 12221 - 12240 篇。
序号 推送日期 文章 类型 简述 创新点 不足 研究目的 研究对象 领域 病种 技术 模型 数据类型 样本量 算法框架 模型架构 性能指标 计算资源
12221 2025-05-03
Deep learning for automatic volumetric bowel segmentation on body CT images
2025-May-02, European radiology IF:4.7Q1
research paper 开发了一种用于自动肠道分割的深度神经网络,并评估其在便秘患者中估计大肠长度的适用性 使用3D nnU-Net模型实现了胃肠道的高精度分割和四部分分离,性能优于现有工具TotalSegmentator 食管的分割精度相对较低(DSC为0.807±0.173) 开发自动肠道分割模型并评估其在便秘患者中的应用 便秘患者和健康检查者的腹部CT图像 digital pathology constipation CT imaging 3D nnU-Net image 模型开发使用了133例CT扫描(88名患者),外部测试使用了60例CT扫描(30名患者),LBL测量使用了100例CT扫描(51名患者) NA NA NA NA
12222 2025-05-03
Omics data classification using constitutive artificial neural network optimized with single candidate optimizer
2025-May, Network (Bristol, England)
研究论文 提出了一种基于Zebra优化算法和构成性人工神经网络的omics数据分类方法,并通过单候选优化器优化权重参数 结合Zebra优化算法进行降维,并使用构成性人工神经网络分类omics数据,通过单候选优化器优化权重参数,提高了分类准确率 未提及具体的数据集大小或实验设置的局限性 提高omics数据的分类准确率 omics数据(如基因组学、蛋白质组学和微生物组学数据) 机器学习 NA Adaptive variational Bayesian filtering (AVBF), Zebra Optimization Algorithm (ZOA), Constitutive Artificial Neural Network (CANN), Single Candidate Optimizer (SCO) CANN omics数据 NA NA NA NA NA
12223 2025-05-03
Hybrid deep learning-based skin cancer classification with RPO-SegNet for skin lesion segmentation
2025-May, Network (Bristol, England)
research paper 提出了一种基于混合深度学习的皮肤癌分类方法,结合RPO-SegNet进行皮肤病变分割 提出了Recurrent Prototypical Object Segmentation Network (RPO-SegNet)用于皮肤病变分割,以及Fuzzy-based Shepard Convolutional Maxout Network (FSCMN)用于皮肤癌分类 NA 提高皮肤癌的准确和及时识别,以降低死亡率 皮肤黑色素病变 computer vision skin cancer deep learning RPO-SegNet, FSCMN, DMN, ShCNN image NA NA NA NA NA
12224 2025-05-03
Prognostic value of manual versus automatic methods for assessing extents of resection and residual tumor volume in glioblastoma
2025-May-01, Journal of neurosurgery IF:3.5Q1
research paper 比较手动与自动方法评估胶质母细胞瘤切除范围和残留肿瘤体积的预后价值 使用Raidionics开源软件和预训练深度学习模型进行自动分割,比较其与手动方法在预后评估中的效果 未发现全切除与近全切除(90%-99%)在预后上的显著差异 评估自动与手动方法在胶质母细胞瘤预后中的价值 成年胶质母细胞瘤患者 digital pathology glioblastoma deep learning pretrained deep learning models image 来自欧洲和北美12家医院的成年胶质母细胞瘤患者 NA NA NA NA
12225 2025-05-03
Harnessing omics data for drug discovery and development in ovarian aging
2025-May-01, Human reproduction update IF:14.8Q1
review 该综述综合了关于卵巢衰老的多组学数据,探讨如何利用这些数据发现新的药物靶点并指导治疗策略 结合单细胞技术和空间转录组学等前沿组学技术,利用AI模型预测候选药物靶点,为个性化医疗和精准治疗提供新途径 仅限于截至2024年9月的英文文献,可能遗漏非英语研究 探索卵巢衰老的分子机制,发现减缓或逆转卵巢衰老的药物靶点 卵巢衰老相关的多组学数据(基因组、转录组、蛋白质组、代谢组、微生物组) 生物信息学 卵巢衰老 多组学分析(基因组、转录组、蛋白质组、代谢组、微生物组)、单细胞技术、空间转录组学、GWAS、全外显子测序、PheWAS、孟德尔随机化 AI、深度学习、机器学习 多组学数据 NA NA NA NA NA
12226 2025-05-03
Deep learning-aided preparation and mechanism revaluation of waste wood lignocellulose-based flame-retardant composites
2025-May, International journal of biological macromolecules IF:7.7Q1
研究论文 本研究提出了一种利用深度学习辅助制备废木材基阻燃复合材料的方法,并重新评估了其阻燃机制 结合深度学习模型预测复合材料的阻燃性能,实现了废木材的高值化利用 未明确说明实验样本的具体数量及模型在其他类型废木材上的泛化能力 实现建筑行业废木材的高效回收利用,促进绿色低碳发展 废木材基阻燃复合材料 机器学习 NA 深度学习 LSTM 材料性能数据 NA NA NA NA NA
12227 2025-05-03
The Use of Maximum-Intensity Projections and Deep Learning Adds Value to the Fully Automatic Segmentation of Lesions Avid for [18F]FDG and [68Ga]Ga-PSMA in PET/CT
2025-May-01, Journal of nuclear medicine : official publication, Society of Nuclear Medicine IF:9.1Q1
research paper 本研究探讨了在[F]FDG和[Ga]Ga-PSMA PET/CT扫描中使用最大强度投影(MIP)图像结合深度学习(DL)进行全自动病灶分割的附加价值 结合MIP图像和深度学习技术,提出了一种改进的全自动病灶分割方法,并在[F]FDG PET/CT扫描中显示出减少假阳性病灶和改善肿瘤负荷量化的潜力 在[Ga]Ga-PSMA PET/CT扫描中,与标准DL方法相比未观察到显著性能提升 评估MIP图像在PET/CT扫描全自动病灶分割中的附加价值 [F]FDG和[Ga]Ga-PSMA PET/CT扫描中的病灶 digital pathology melanoma, lymphoma, lung cancer, prostate cancer PET/CT, deep learning 3-dimensional U-Net medical imaging 489例[F]FDG PET/CT扫描(391训练/98测试)和117例外部测试集,355例[Ga]Ga-PSMA PET/CT扫描(285训练/70测试) NA NA NA NA
12228 2025-05-03
Research on adversarial identification methods for AI-generated image software Craiyon V3
2025-May, Journal of forensic sciences IF:1.5Q2
研究论文 本文研究了针对AI生成图像软件Craiyon V3的对抗性识别方法,旨在为司法实践提供可靠的决策依据 引入基于分数的似然比方法来评估证据强度,并在多种阈值分类器上实现了超过99%的准确率 研究仅针对Craiyon V3生成的图像,未涵盖其他AI生成图像软件 开发对抗性识别方法以区分AI生成图像,保障司法公正 Craiyon V3软件生成的图像 计算机视觉 NA 深度学习 Swin-Transformer, ResNet-18 图像 18,000张由Craiyon V3生成的图像 NA NA NA NA
12229 2025-05-03
Reconstructing and predicting stochastic dynamical systems using probabilistic deep learning
2025-May-01, Chaos (Woodbury, N.Y.)
研究论文 本研究提出了一种深度随机时间延迟嵌入模型,用于改进随机动力系统的数据驱动重建和预测 将不确定性学习整合到深度学习模型中,构建深度概率捕捉器以捕获重建映射中的不确定性信息,并将其作为元信息整合到时间延迟嵌入的重建过程中 NA 提高随机动力系统的预测准确性和鲁棒性 随机动力系统 机器学习 NA 深度学习 深度随机时间延迟嵌入模型 时间序列数据 Lorenz系统和真实世界数据集 NA NA NA NA
12230 2025-05-03
Transformer-based Koopman autoencoder for linearizing Fisher's equation
2025-May-01, Chaos (Woodbury, N.Y.)
研究论文 提出了一种基于Transformer的Koopman自编码器,用于线性化Fisher的反应-扩散方程 使用深度学习技术发现反应-扩散系统中的复杂时空模式,并将系统动态转化为更易理解的线性形式 完全依赖数据,不要求了解基础方程,可能对未知方程的数据集适用性有限 通过深度学习技术线性化反应-扩散方程,并预测系统演化 Fisher的反应-扩散方程、Kuramoto-Sivashinsky方程和Burger's方程 机器学习 NA 深度学习 Transformer-based Koopman autoencoder 数值模拟数据 60,000个初始条件的数据集 NA NA NA NA
12231 2025-05-03
3D tooth identification for forensic dentistry using deep learning
2025-Apr-30, BMC oral health IF:2.6Q1
research paper 该研究提出了一种利用深度学习从3D牙齿模型中提取关键特征并转换为2D图像格式进行详细分析的新方法 创新性地将3D牙齿模型转换为2D图像格式,并使用RNN架构进行准确分类,提高了诊断效率和准确性 未提及具体的数据集大小或模型性能的详细比较 提高法医牙科中牙齿结构的分类准确性和效率 3D牙齿模型 computer vision NA 3D成像和2D图像转换 RNN 3D模型和2D图像 NA NA NA NA NA
12232 2025-05-03
Clinical Applications of Artificial Intelligence in Vascular Surgery
2025-Apr-30, Vascular specialist international IF:0.8Q4
review 本文综述了人工智能在血管外科中的临床应用,包括基础知识、技术应用及面临的挑战 探讨了人工智能在血管外科中的具体应用及智能穿戴设备的使用 血管外科医生对计算机科学和复杂AI技术的理解有限,阻碍了AI的广泛应用 促进人工智能技术在血管外科领域的应用与发展 血管外科医生及AI技术在血管外科的应用 machine learning cardiovascular disease machine learning, deep learning, artificial neural networks NA NA NA NA NA NA NA
12233 2025-05-03
Artificial Intelligence in Speech-Language Pathology and Dysphagia: A Review From Latin American Perspective and Pilot Test of LLMs for Rehabilitation Planning
2025-Apr-30, Journal of voice : official journal of the Voice Foundation IF:2.5Q1
review 本文综述了人工智能在言语病理学和吞咽障碍管理中的应用,特别关注拉丁美洲的实施挑战,并测试了大型语言模型在康复规划中的潜力 从拉丁美洲视角探讨AI在言语病理学和吞咽障碍中的应用,并首次测试大型语言模型在康复规划中的效用 当前AI应用主要集中于诊断而非综合康复,且在拉丁美洲面临基础设施不足、语言适应有限和地区数据集稀缺等障碍 探讨人工智能在言语病理学和吞咽障碍管理中的应用及其在拉丁美洲的实施挑战 言语病理学和吞咽障碍患者 natural language processing geriatric disease deep learning, machine learning algorithms, natural language processing LLMs text NA NA NA NA NA
12234 2025-05-03
Deep learning for quality assessment of axial T2-weighted prostate MRI: a tool to reduce unnecessary rescanning
2025-Apr-29, European radiology experimental IF:3.7Q1
research paper 该研究开发了一种深度学习模型,用于自动评估前列腺MRI中T2加权图像的质量,以减少不必要的重复扫描 首次使用深度学习模型自动评估前列腺MRI图像质量,并预测是否需要重复扫描 研究为回顾性设计,需要在临床前瞻性环境中进一步验证 开发自动评估前列腺MRI图像质量的工具,优化临床工作流程 前列腺MRI的T2加权图像 digital pathology prostate cancer MRI 3D-DenseNet_169 image 1,412例轴向T2加权前列腺扫描 NA NA NA NA
12235 2025-05-03
Piezotronic Sensor for Bimodal Monitoring of Achilles Tendon Behavior
2025-Apr-29, Nano-micro letters IF:31.6Q1
research paper 开发了一种基于Y离子掺杂ZnO的压电双模态传感器(BPS),用于同时监测动态和静态力,并在跟腱行为监测中进行了验证 利用Y离子掺杂ZnO的独特压电效应,简化了传感器结构并提高了灵敏度,实现了动态和静态力的双模态监测 未提及具体样本量或临床验证范围,可能限制其在实际医疗应用中的普适性 解决传统压力传感器在双模态检测中结构复杂和信号解耦困难的问题 跟腱行为在混合动态和静态负载条件下的监测 wearable electronics NA 压电效应,深度学习算法 深度学习算法 力信号 NA NA NA NA NA
12236 2025-05-03
Real-time and universal network for volumetric imaging from microscale to macroscale at high resolution
2025-Apr-29, Light, science & applications
研究论文 提出了一种实时通用的网络RTU-Net,用于从微观到宏观尺度的高分辨率光场图像重建 首次提出适用于多尺度(微观、中观、宏观)光场图像重建的通用网络,采用基于生成对抗理论的自适应损失函数 未明确提及具体限制条件 开发一种通用的高分辨率光场图像重建方法,适用于不同尺度 微观尺度的微管蛋白和线粒体数据集、中观尺度的合成小鼠神经数据集、宏观尺度的光场粒子图像测速数据集 计算机视觉 NA 光场成像技术 RTU-Net(基于生成对抗理论的网络) 图像 体积范围从300μm×300μm×12μm到25mm×25mm×25mm的多尺度数据集 NA NA NA NA
12237 2025-05-03
MetaStackD A robust meta learning based deep ensemble model for prediction of sensors battery life in IoE environment
2025-Apr-29, Scientific reports IF:3.8Q1
研究论文 提出了一种基于元学习的深度集成模型MetaStackD,用于预测IoE环境中传感器的剩余电池寿命 整合了预处理、标准化、编码方案和预测建模,引入了RFRImpute和MetaStackD两种算法,采用元学习深度集成方法分析功耗、环境条件、操作频率和工作负载模式等因素 NA 优化IoE环境中传感器的电池寿命预测,以提高网络性能和数据的可靠性 IoE设备中的传感器 机器学习 NA 元学习、深度集成学习 MetaStackD、Random Forest、Gradient Boosting、Light Gradient Boosting、Categorical Boosting、Extreme Gradient Boosting 传感器数据 真实世界的芝加哥公园区海滩水IoE数据集 NA NA NA NA
12238 2025-05-03
High accuracy indoor positioning system using Galois field-based cryptography and hybrid deep learning
2025-Apr-29, Scientific reports IF:3.8Q1
研究论文 提出了一种结合Galois域密码学和混合深度学习的室内高精度定位系统 结合了ECC加密解密方法、Deep-STAN混合模型以及区块链技术,提高了定位系统的准确性、安全性和稳定性 未提及系统在极端环境下的表现或大规模部署的可行性 解决传统室内定位系统在准确性、鲁棒性和安全性方面的不足 室内定位系统在智能制造和物流等环境中的应用 机器学习 NA Wi-Fi、蓝牙、磁力计信号处理,DBSCAN聚类,ECC加密 Deep-STAN(结合CNN、ViT、LSTM和注意力机制) 信号强度测量、上下文数据 未明确提及具体样本数量,但测试数据包含80%的数据子集 NA NA NA NA
12239 2025-05-03
Real-time airway monitoring system using binary classification model based on respiratory sounds of rabbits with a tracheostomy tube
2025-Apr-29, Scientific reports IF:3.8Q1
研究论文 开发了一种基于兔子气管切开术后呼吸音的实时气道监测系统,使用深度学习模型进行二元分类 首次使用深度学习评估气管切开兔子的气道状况,并开发了基于物联网的实时远程数据传输设备 研究使用的是兔子模型,而非人类数据,可能影响结果在人类中的适用性 开发一种连续、标准化的实时气道评估系统 气管切开术后的兔子 数字病理 呼吸系统疾病 深度学习 CNN 音频 29只新西兰兔,共1,443个呼吸周期(402个4秒呼吸音样本) NA NA NA NA
12240 2025-05-03
The data analysis of sports training by ID3 decision tree algorithm and deep learning
2025-Apr-29, Scientific reports IF:3.8Q1
研究论文 本文提出了一种结合ID3决策树算法和深度学习模型的优化分析模型,以提高体育训练数据分析的准确性和效率 结合ID3决策树算法和深度学习模型,优化体育训练数据分析的性能 未提及具体的数据集规模或实际应用中的潜在问题 提高体育训练数据分析的准确性和效率,为运动员和教练提供决策支持 体育训练数据 机器学习 NA ID3决策树算法、深度学习 ID3、XGBoost、CapsNets 体育训练数据 NA NA NA NA NA
回到顶部