本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新(使用关键词“['deep learning']
”过滤),已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!
除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价19.9元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 | 算法框架 | 模型架构 | 性能指标 | 计算资源 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
12221 | 2025-05-03 |
Integrating Plasma Cell-Free DNA Fragment End Motif and Size with Genomic Features Enables Lung Cancer Detection
2025-May-02, Cancer research
IF:12.5Q1
DOI:10.1158/0008-5472.CAN-24-1517
PMID:40136052
|
研究论文 | 通过整合血浆游离DNA片段末端基序、大小及基因组特征,开发了一种提高肺癌检测准确性的深度学习方法 | 结合cfDNA片段末端基序与大小特征及基因组覆盖度,开发了性能优于单一特征的集成分类器,并在不同种族人群中验证了其泛化能力 | 样本量相对有限,尤其是高加索人验证队列仅包含50例患者和50例对照 | 提高肺癌早期检测的准确性 | 肺癌患者与健康对照的血浆游离DNA | 数字病理学 | 肺癌 | 全基因组测序 | 深度学习分类器 | 基因组数据 | 韩国发现数据集(218例患者+2559例对照)、韩国验证数据集(111例患者+1136例对照)、高加索人验证队列(50例患者+50例对照) | NA | NA | NA | NA |
12222 | 2025-05-03 |
Deep Learning-Based Prediction of Decoy Spectra for False Discovery Rate Estimation in Spectral Library Searching
2025-May-02, Journal of proteome research
IF:3.8Q1
DOI:10.1021/acs.jproteome.4c00304
PMID:40252226
|
研究论文 | 本研究探讨了基于深度学习的诱饵光谱预测方法,用于光谱库搜索中的假发现率估计 | 提出了无需模板光谱即可生成诱饵光谱的shuffle-and-predict方法,提高了诱饵光谱的多样性和数量 | 未明确说明该方法在预测库场景下的具体性能限制 | 改进蛋白质组学数据分析中的假发现率估计方法 | 预测光谱库和诱饵光谱 | 机器学习 | NA | 深度学习 | NA | 光谱数据 | NA | NA | NA | NA | NA |
12223 | 2025-05-03 |
A multimodal and fully automated system for prediction of pathological complete response to neoadjuvant chemotherapy in breast cancer
2025-May-02, Science advances
IF:11.7Q1
DOI:10.1126/sciadv.adr1576
PMID:40305609
|
研究论文 | 开发了一种多模态集成全自动管道系统(MIFAPS),用于预测乳腺癌患者对新辅助化疗的病理完全缓解 | 整合了多模态数据(MRI、全切片图像和临床风险因素)的全自动系统,显著优于单模态模型 | 需要进一步验证系统的临床适用性和泛化能力 | 提高乳腺癌患者对新辅助化疗病理完全缓解的预测准确性 | 1004名局部晚期乳腺癌患者 | 数字病理学 | 乳腺癌 | 深度学习 | MIFAPS | 图像、临床数据 | 1004名患者 | NA | NA | NA | NA |
12224 | 2025-05-03 |
A depression detection approach leveraging transfer learning with single-channel EEG
2025-May-02, Journal of neural engineering
IF:3.7Q2
DOI:10.1088/1741-2552/adcfc8
PMID:40314182
|
research paper | 提出一种利用单通道脑电图(EEG)和迁移学习技术检测抑郁症的方法 | 采用单通道EEG信号和迁移学习技术,解决了多通道EEG在日常生活应用中的限制,并通过图像转换提高了模型性能 | 可用的抑郁症EEG数据有限,可能影响模型在区分抑郁症患者和健康受试者方面的效果 | 开发一种基于单通道EEG信号的抑郁症检测模型 | 抑郁症患者和健康个体的EEG信号 | machine learning | geriatric disease | EEG信号处理和迁移学习 | ResNet152V2 | EEG信号(转换为图像) | 有限数量的受试者 | NA | NA | NA | NA |
12225 | 2025-05-03 |
Heuristic multi-scale feature fusion with attention-based CNN for sentiment analysis
2025-May-02, Network (Bristol, England)
DOI:10.1080/0954898X.2025.2498735
PMID:40314204
|
研究论文 | 提出了一种基于注意力机制的启发式多尺度特征融合CNN模型,用于情感分析 | 结合了多尺度特征融合和注意力机制的CNN模型,并使用改进的FORSO算法进行参数调优 | 未提及具体的数据集规模和模型计算复杂度 | 提高情感分析的准确率 | 用户生成的文本数据 | 自然语言处理 | NA | BERT, Transformers, word2vector | MFF-AACNet (基于注意力机制的CNN) | 文本 | 未提及具体数量,数据来自公开资源 | NA | NA | NA | NA |
12226 | 2025-05-03 |
Deep learning for automatic volumetric bowel segmentation on body CT images
2025-May-02, European radiology
IF:4.7Q1
DOI:10.1007/s00330-025-11623-z
PMID:40314787
|
research paper | 开发了一种用于自动肠道分割的深度神经网络,并评估其在便秘患者中估计大肠长度的适用性 | 使用3D nnU-Net模型实现了胃肠道的高精度分割和四部分分离,性能优于现有工具TotalSegmentator | 食管的分割精度相对较低(DSC为0.807±0.173) | 开发自动肠道分割模型并评估其在便秘患者中的应用 | 便秘患者和健康检查者的腹部CT图像 | digital pathology | constipation | CT imaging | 3D nnU-Net | image | 模型开发使用了133例CT扫描(88名患者),外部测试使用了60例CT扫描(30名患者),LBL测量使用了100例CT扫描(51名患者) | NA | NA | NA | NA |
12227 | 2025-05-03 |
Omics data classification using constitutive artificial neural network optimized with single candidate optimizer
2025-May, Network (Bristol, England)
DOI:10.1080/0954898X.2024.2348726
PMID:38736309
|
研究论文 | 提出了一种基于Zebra优化算法和构成性人工神经网络的omics数据分类方法,并通过单候选优化器优化权重参数 | 结合Zebra优化算法进行降维,并使用构成性人工神经网络分类omics数据,通过单候选优化器优化权重参数,提高了分类准确率 | 未提及具体的数据集大小或实验设置的局限性 | 提高omics数据的分类准确率 | omics数据(如基因组学、蛋白质组学和微生物组学数据) | 机器学习 | NA | Adaptive variational Bayesian filtering (AVBF), Zebra Optimization Algorithm (ZOA), Constitutive Artificial Neural Network (CANN), Single Candidate Optimizer (SCO) | CANN | omics数据 | NA | NA | NA | NA | NA |
12228 | 2025-05-03 |
Hybrid deep learning-based skin cancer classification with RPO-SegNet for skin lesion segmentation
2025-May, Network (Bristol, England)
DOI:10.1080/0954898X.2024.2428705
PMID:39628058
|
research paper | 提出了一种基于混合深度学习的皮肤癌分类方法,结合RPO-SegNet进行皮肤病变分割 | 提出了Recurrent Prototypical Object Segmentation Network (RPO-SegNet)用于皮肤病变分割,以及Fuzzy-based Shepard Convolutional Maxout Network (FSCMN)用于皮肤癌分类 | NA | 提高皮肤癌的准确和及时识别,以降低死亡率 | 皮肤黑色素病变 | computer vision | skin cancer | deep learning | RPO-SegNet, FSCMN, DMN, ShCNN | image | NA | NA | NA | NA | NA |
12229 | 2025-05-03 |
Prognostic value of manual versus automatic methods for assessing extents of resection and residual tumor volume in glioblastoma
2025-May-01, Journal of neurosurgery
IF:3.5Q1
DOI:10.3171/2024.8.JNS24415
PMID:39823581
|
research paper | 比较手动与自动方法评估胶质母细胞瘤切除范围和残留肿瘤体积的预后价值 | 使用Raidionics开源软件和预训练深度学习模型进行自动分割,比较其与手动方法在预后评估中的效果 | 未发现全切除与近全切除(90%-99%)在预后上的显著差异 | 评估自动与手动方法在胶质母细胞瘤预后中的价值 | 成年胶质母细胞瘤患者 | digital pathology | glioblastoma | deep learning | pretrained deep learning models | image | 来自欧洲和北美12家医院的成年胶质母细胞瘤患者 | NA | NA | NA | NA |
12230 | 2025-05-03 |
Harnessing omics data for drug discovery and development in ovarian aging
2025-May-01, Human reproduction update
IF:14.8Q1
DOI:10.1093/humupd/dmaf002
PMID:39977580
|
review | 该综述综合了关于卵巢衰老的多组学数据,探讨如何利用这些数据发现新的药物靶点并指导治疗策略 | 结合单细胞技术和空间转录组学等前沿组学技术,利用AI模型预测候选药物靶点,为个性化医疗和精准治疗提供新途径 | 仅限于截至2024年9月的英文文献,可能遗漏非英语研究 | 探索卵巢衰老的分子机制,发现减缓或逆转卵巢衰老的药物靶点 | 卵巢衰老相关的多组学数据(基因组、转录组、蛋白质组、代谢组、微生物组) | 生物信息学 | 卵巢衰老 | 多组学分析(基因组、转录组、蛋白质组、代谢组、微生物组)、单细胞技术、空间转录组学、GWAS、全外显子测序、PheWAS、孟德尔随机化 | AI、深度学习、机器学习 | 多组学数据 | NA | NA | NA | NA | NA |
12231 | 2025-05-03 |
Deep learning-aided preparation and mechanism revaluation of waste wood lignocellulose-based flame-retardant composites
2025-May, International journal of biological macromolecules
IF:7.7Q1
DOI:10.1016/j.ijbiomac.2025.141690
PMID:40043971
|
研究论文 | 本研究提出了一种利用深度学习辅助制备废木材基阻燃复合材料的方法,并重新评估了其阻燃机制 | 结合深度学习模型预测复合材料的阻燃性能,实现了废木材的高值化利用 | 未明确说明实验样本的具体数量及模型在其他类型废木材上的泛化能力 | 实现建筑行业废木材的高效回收利用,促进绿色低碳发展 | 废木材基阻燃复合材料 | 机器学习 | NA | 深度学习 | LSTM | 材料性能数据 | NA | NA | NA | NA | NA |
12232 | 2025-05-03 |
The Use of Maximum-Intensity Projections and Deep Learning Adds Value to the Fully Automatic Segmentation of Lesions Avid for [18F]FDG and [68Ga]Ga-PSMA in PET/CT
2025-May-01, Journal of nuclear medicine : official publication, Society of Nuclear Medicine
IF:9.1Q1
DOI:10.2967/jnumed.124.269067
PMID:40081959
|
research paper | 本研究探讨了在[F]FDG和[Ga]Ga-PSMA PET/CT扫描中使用最大强度投影(MIP)图像结合深度学习(DL)进行全自动病灶分割的附加价值 | 结合MIP图像和深度学习技术,提出了一种改进的全自动病灶分割方法,并在[F]FDG PET/CT扫描中显示出减少假阳性病灶和改善肿瘤负荷量化的潜力 | 在[Ga]Ga-PSMA PET/CT扫描中,与标准DL方法相比未观察到显著性能提升 | 评估MIP图像在PET/CT扫描全自动病灶分割中的附加价值 | [F]FDG和[Ga]Ga-PSMA PET/CT扫描中的病灶 | digital pathology | melanoma, lymphoma, lung cancer, prostate cancer | PET/CT, deep learning | 3-dimensional U-Net | medical imaging | 489例[F]FDG PET/CT扫描(391训练/98测试)和117例外部测试集,355例[Ga]Ga-PSMA PET/CT扫描(285训练/70测试) | NA | NA | NA | NA |
12233 | 2025-05-03 |
Research on adversarial identification methods for AI-generated image software Craiyon V3
2025-May, Journal of forensic sciences
IF:1.5Q2
DOI:10.1111/1556-4029.70034
PMID:40156229
|
研究论文 | 本文研究了针对AI生成图像软件Craiyon V3的对抗性识别方法,旨在为司法实践提供可靠的决策依据 | 引入基于分数的似然比方法来评估证据强度,并在多种阈值分类器上实现了超过99%的准确率 | 研究仅针对Craiyon V3生成的图像,未涵盖其他AI生成图像软件 | 开发对抗性识别方法以区分AI生成图像,保障司法公正 | Craiyon V3软件生成的图像 | 计算机视觉 | NA | 深度学习 | Swin-Transformer, ResNet-18 | 图像 | 18,000张由Craiyon V3生成的图像 | NA | NA | NA | NA |
12234 | 2025-05-03 |
Reconstructing and predicting stochastic dynamical systems using probabilistic deep learning
2025-May-01, Chaos (Woodbury, N.Y.)
DOI:10.1063/5.0248312
PMID:40310707
|
研究论文 | 本研究提出了一种深度随机时间延迟嵌入模型,用于改进随机动力系统的数据驱动重建和预测 | 将不确定性学习整合到深度学习模型中,构建深度概率捕捉器以捕获重建映射中的不确定性信息,并将其作为元信息整合到时间延迟嵌入的重建过程中 | NA | 提高随机动力系统的预测准确性和鲁棒性 | 随机动力系统 | 机器学习 | NA | 深度学习 | 深度随机时间延迟嵌入模型 | 时间序列数据 | Lorenz系统和真实世界数据集 | NA | NA | NA | NA |
12235 | 2025-05-03 |
Transformer-based Koopman autoencoder for linearizing Fisher's equation
2025-May-01, Chaos (Woodbury, N.Y.)
DOI:10.1063/5.0244221
PMID:40310706
|
研究论文 | 提出了一种基于Transformer的Koopman自编码器,用于线性化Fisher的反应-扩散方程 | 使用深度学习技术发现反应-扩散系统中的复杂时空模式,并将系统动态转化为更易理解的线性形式 | 完全依赖数据,不要求了解基础方程,可能对未知方程的数据集适用性有限 | 通过深度学习技术线性化反应-扩散方程,并预测系统演化 | Fisher的反应-扩散方程、Kuramoto-Sivashinsky方程和Burger's方程 | 机器学习 | NA | 深度学习 | Transformer-based Koopman autoencoder | 数值模拟数据 | 60,000个初始条件的数据集 | NA | NA | NA | NA |
12236 | 2025-05-03 |
3D tooth identification for forensic dentistry using deep learning
2025-Apr-30, BMC oral health
IF:2.6Q1
DOI:10.1186/s12903-025-06017-y
PMID:40301795
|
research paper | 该研究提出了一种利用深度学习从3D牙齿模型中提取关键特征并转换为2D图像格式进行详细分析的新方法 | 创新性地将3D牙齿模型转换为2D图像格式,并使用RNN架构进行准确分类,提高了诊断效率和准确性 | 未提及具体的数据集大小或模型性能的详细比较 | 提高法医牙科中牙齿结构的分类准确性和效率 | 3D牙齿模型 | computer vision | NA | 3D成像和2D图像转换 | RNN | 3D模型和2D图像 | NA | NA | NA | NA | NA |
12237 | 2025-05-03 |
Clinical Applications of Artificial Intelligence in Vascular Surgery
2025-Apr-30, Vascular specialist international
IF:0.8Q4
DOI:10.5758/vsi.240120
PMID:40302180
|
review | 本文综述了人工智能在血管外科中的临床应用,包括基础知识、技术应用及面临的挑战 | 探讨了人工智能在血管外科中的具体应用及智能穿戴设备的使用 | 血管外科医生对计算机科学和复杂AI技术的理解有限,阻碍了AI的广泛应用 | 促进人工智能技术在血管外科领域的应用与发展 | 血管外科医生及AI技术在血管外科的应用 | machine learning | cardiovascular disease | machine learning, deep learning, artificial neural networks | NA | NA | NA | NA | NA | NA | NA |
12238 | 2025-05-03 |
Artificial Intelligence in Speech-Language Pathology and Dysphagia: A Review From Latin American Perspective and Pilot Test of LLMs for Rehabilitation Planning
2025-Apr-30, Journal of voice : official journal of the Voice Foundation
IF:2.5Q1
DOI:10.1016/j.jvoice.2025.04.010
PMID:40312192
|
review | 本文综述了人工智能在言语病理学和吞咽障碍管理中的应用,特别关注拉丁美洲的实施挑战,并测试了大型语言模型在康复规划中的潜力 | 从拉丁美洲视角探讨AI在言语病理学和吞咽障碍中的应用,并首次测试大型语言模型在康复规划中的效用 | 当前AI应用主要集中于诊断而非综合康复,且在拉丁美洲面临基础设施不足、语言适应有限和地区数据集稀缺等障碍 | 探讨人工智能在言语病理学和吞咽障碍管理中的应用及其在拉丁美洲的实施挑战 | 言语病理学和吞咽障碍患者 | natural language processing | geriatric disease | deep learning, machine learning algorithms, natural language processing | LLMs | text | NA | NA | NA | NA | NA |
12239 | 2025-05-03 |
Deep learning for quality assessment of axial T2-weighted prostate MRI: a tool to reduce unnecessary rescanning
2025-Apr-29, European radiology experimental
IF:3.7Q1
DOI:10.1186/s41747-025-00584-z
PMID:40299162
|
research paper | 该研究开发了一种深度学习模型,用于自动评估前列腺MRI中T2加权图像的质量,以减少不必要的重复扫描 | 首次使用深度学习模型自动评估前列腺MRI图像质量,并预测是否需要重复扫描 | 研究为回顾性设计,需要在临床前瞻性环境中进一步验证 | 开发自动评估前列腺MRI图像质量的工具,优化临床工作流程 | 前列腺MRI的T2加权图像 | digital pathology | prostate cancer | MRI | 3D-DenseNet_169 | image | 1,412例轴向T2加权前列腺扫描 | NA | NA | NA | NA |
12240 | 2025-05-03 |
Piezotronic Sensor for Bimodal Monitoring of Achilles Tendon Behavior
2025-Apr-29, Nano-micro letters
IF:31.6Q1
DOI:10.1007/s40820-025-01757-6
PMID:40299192
|
research paper | 开发了一种基于Y离子掺杂ZnO的压电双模态传感器(BPS),用于同时监测动态和静态力,并在跟腱行为监测中进行了验证 | 利用Y离子掺杂ZnO的独特压电效应,简化了传感器结构并提高了灵敏度,实现了动态和静态力的双模态监测 | 未提及具体样本量或临床验证范围,可能限制其在实际医疗应用中的普适性 | 解决传统压力传感器在双模态检测中结构复杂和信号解耦困难的问题 | 跟腱行为在混合动态和静态负载条件下的监测 | wearable electronics | NA | 压电效应,深度学习算法 | 深度学习算法 | 力信号 | NA | NA | NA | NA | NA |