深度学习在生物医药领域中的应用

本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!

如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!

Sample Image
添加微信请说明来意
Sample Image
微信赞赏

除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。

当前筛选条件: [分区不过滤] [IF不过滤] [发表日期不过滤] [清除筛选条件]
当前共找到 25694 篇文献,本页显示第 1221 - 1240 篇。
序号 推送日期 文章 类型 简述 创新点 不足 研究目的 研究对象 领域 病种 技术 模型 数据类型 样本量
1221 2025-05-22
CNN based precise nonlinear tracking control for a nano unmanned helicopter: Theory and implementation
2025-May-15, ISA transactions IF:6.3Q1
research paper 本文提出了一种基于深度卷积神经网络(CNN)的几何积分控制策略,用于重量小于70克、机身长度小于0.25米的纳米无人直升机 与现有非线性控制器相比,该方法在可行性、参数调整简便性和数据需求方面具有显著优势 NA 开发一种适用于纳米无人直升机的精确非线性跟踪控制方法 纳米无人直升机 machine learning NA deep CNN CNN flight data NA
1222 2025-05-22
Quantitative spatial analysis of chromatin biomolecular condensates using cryoelectron tomography
2025-May-13, Proceedings of the National Academy of Sciences of the United States of America IF:9.4Q1
研究论文 本文通过冷冻电子断层扫描技术分析了生物化学重构的染色质凝聚体的结构 整合了基于深度学习的分割与上下文感知模板匹配技术,以识别凝聚体内密集堆积的分子 方法主要适用于含有大且独特组分的生物分子凝聚体,可能不适用于所有类型的凝聚体 研究染色质凝聚体的形成和功能机制 生物化学重构的染色质凝聚体及原位天然染色质的凝聚区域 生物物理学 NA 冷冻电子断层扫描、深度学习分割、上下文感知模板匹配 深度学习 图像 NA
1223 2025-05-22
Study on predicting breast cancer Ki-67 expression using a combination of radiomics and deep learning based on multiparametric MRI
2025-May-11, Magnetic resonance imaging IF:2.1Q2
research paper 开发了一种基于多参数乳腺MRI放射组学和深度学习的多模态模型,用于预测乳腺癌术前Ki-67表达状态 结合多参数MRI放射组学和深度学习技术,构建多模态模型预测Ki-67表达状态 样本量较小(176例患者),且仅基于单一机构数据 预测乳腺癌术前Ki-67表达状态,推进个体化治疗和精准医疗 176例浸润性乳腺癌患者 digital pathology breast cancer multiparametric MRI (mp-MRI), T1WI, DWI, T2WI, DCE-MRI deep learning MRI图像 176例浸润性乳腺癌患者(训练集70%,测试集30%)
1224 2025-05-22
Meta-tuning and fast optimization of machine learning models for dynamic methane prediction in anaerobic digestion
2025-May-10, Bioresource technology IF:9.7Q1
研究论文 本研究评估了多种优化算法在调整数据准备和超参数优化管道中的性能,用于预测甲烷生产的机器和深度学习模型 通过元调优和快速优化算法提高了机器和深度学习模型在预测甲烷生产中的准确性和效率 研究未涉及所有可能的优化算法和模型类型,且样本量和数据集的具体细节未明确说明 优化机器和深度学习模型以提高甲烷产量预测的准确性 甲烷生产预测模型 机器学习 NA 贝叶斯岭回归和循环神经网络 RNN 稳态和动态数据集 NA
1225 2025-05-22
Deep learning-based polygenic scores enhance generalizability of psychiatric disorders prediction
2025-May-05, medRxiv : the preprint server for health sciences
研究论文 本研究比较了深度学习模型Genome-Local-Net(GLN)与线性模型bigstatsr在预测五种精神疾病(ADHD、ASD、BIP、MDD和SCZ)方面的表现,并评估了结合个体水平多基因评分(PGSs)与GWAS衍生的PGSs及家族遗传风险评分(FGRSs)对预测效果的提升 研究发现深度学习模型GLN在样本外复制集中对ADHD、ASD和MDD的预测具有更好的泛化能力,平均AUROC增益为0.026 深度学习模型的整合并未显示出相对于逻辑回归模型的持续优势 评估深度学习模型在精神疾病遗传风险预测中的表现及其与线性模型的比较 五种精神疾病(ADHD、ASD、BIP、MDD和SCZ)的遗传风险预测 机器学习 精神疾病 深度学习 Genome-Local-Net (GLN), bigstatsr 基因型数据 NA
1226 2025-05-22
Advancement in medical report generation: current practices, challenges, and future directions
2025-May, Medical & biological engineering & computing IF:2.6Q3
综述 本文对医学报告生成的当前实践、挑战和未来方向进行了系统性文献回顾 系统性分析了医学报告生成领域中最常用的深度学习方法及其准确率,并指出了现有方法的局限性 现有方法存在过拟合、偏差风险和高数据依赖性等问题 指导放射科医师选择能够减轻工作负担并提供精确医学诊断的方法 医学报告生成技术 自然语言处理 NA 深度学习 encoder-decoder框架、Transformer、RNN-LSTM、LLM、基于图的方法 医学图像 NA
1227 2025-05-22
Explainable artificial intelligence to quantify adenoid hypertrophy-related upper airway obstruction using 3D Shape Analysis
2025-May, Journal of dentistry IF:4.8Q1
研究论文 开发并验证了一种可解释的人工智能模型,用于通过三维形状分析对腺样体肥大相关的上呼吸道阻塞进行分类和量化 结合多视图和点云方法进行3D形状分析,并使用SurfGradCAM生成可解释性热图 研究样本仅限于5-18岁患者的CBCT扫描 开发一种可解释的AI模型,用于腺样体肥大相关的上呼吸道阻塞的分类和量化 5-18岁患者的CBCT扫描 数字病理学 腺样体肥大 锥形束计算机断层扫描(CBCT) 深度学习模型 3D图像 400例CBCT扫描
1228 2025-05-22
Dynamics of Spatial Organization of Bacterial Communities in a Tunable Flow Gut Microbiome-on-a-Chip
2025-May, Small (Weinheim an der Bergstrasse, Germany)
研究论文 研究通过开发可调流肠道微生物芯片(tfGMoC)探究肠道周期性运动对肠道微生物群落动态的影响 开发了新型可调流肠道微生物芯片(tfGMoC),首次揭示了肠道运动对微生物群落空间组织和行为的调控作用 研究结果基于体外模型,可能无法完全模拟体内复杂的肠道环境 探究肠道周期性运动对肠道微生物群落动态的影响 肠道微生物群落 微生物组学 NA 深度学习微生物分析 NA 图像数据 NA
1229 2025-05-22
Leukaemia Stem Cells and Their Normal Stem Cell Counterparts Are Morphologically Distinguishable by Artificial Intelligence
2025-May, Journal of cellular and molecular medicine IF:4.3Q2
research paper 该研究利用人工智能深度学习技术,通过分析单细胞图像,成功区分白血病干细胞(LSCs)与正常干细胞 首次证明LSCs具有独特的形态特征,并通过AI而非病理学家的显微镜观察识别这些特征 研究仅基于JAK2V617F敲入小鼠模型,尚未在人类患者中验证 开发一种能够识别和监测LSCs的方法,以指导治疗选择和评估治疗效果及疾病预后 白血病干细胞(LSCs)和正常干细胞 digital pathology leukemia deep learning CNN image JAK2V617F敲入小鼠和健康小鼠的干细胞样本
1230 2025-04-26
Correction: Deep Learning-Based Estimation of Radiographic Position to Automatically Set Up the X-Ray Prime Factors
2025-Apr-24, Journal of imaging informatics in medicine
NA NA NA NA NA NA NA NA NA NA NA NA
1231 2025-05-22
Machine Listening for OSA Diagnosis: A Bayesian Meta-Analysis
2025-Apr-11, Chest IF:9.5Q1
meta-analysis 该研究通过贝叶斯元分析评估了机器学习在阻塞性睡眠呼吸暂停(OSA)诊断中的准确性和优化方法 首次使用贝叶斯元分析方法评估机器学习在OSA诊断中的表现,并比较了不同技术参数对诊断准确性的影响 研究仅基于已发表的文献,可能存在未发表数据的偏差 评估和优化机器学习在OSA诊断中的准确性 阻塞性睡眠呼吸暂停(OSA)患者 machine learning 阻塞性睡眠呼吸暂停 Bayesian bivariate meta-analysis deep learning vs traditional machine learning audio recordings 训练集4,864名参与者,测试集2,370名参与者
1232 2025-05-22
Dynamic Prediction of Cardiovascular Death among Old People with Mildly Reduced Kidney Function Using Deep Learning Models Based on a Prospective Cohort Study
2025-Apr-03, Gerontology IF:3.1Q3
研究论文 本研究使用深度学习模型动态预测肾功能轻度降低的老年人心血管死亡风险 采用新型深度学习算法Dynamic DeepHit (DDH)模型,在纵向研究中展示了对个体动态生存预测的优越性能 研究仅基于中国天津社区健康促进前瞻性研究的数据,可能限制结果的普适性 识别肾功能轻度降低老年人群中心血管死亡的相关特征,并开发预测模型 12,650名60岁以上肾功能轻度降低的老年人 机器学习 心血管疾病 Cox回归、随机生存森林(RSF)、DeepHit(DH)、Dynamic DeepHit(DDH) DDH, RSF, DH, Cox回归 临床数据 12,650名老年人(2014-2020年随访数据)
1233 2025-05-22
The need for balancing 'black box' systems and explainable artificial intelligence: A necessary implementation in radiology
2025-Apr, European journal of radiology IF:3.2Q1
评论 本文讨论了在放射学中平衡'黑盒'系统和可解释人工智能(XAI)的必要性 提出在放射学中优先考虑可解释人工智能(XAI),以增强透明度和伦理标准 XAI可能性能不如黑盒模型,且当前AI系统仍存在数据隐私、偏见和幻觉等问题 探讨AI在放射学中的应用及其伦理和法律挑战 放射学中的AI系统及其对医疗决策的影响 数字病理学 NA 机器学习和深度学习 黑盒模型和XAI 图像 NA
1234 2025-05-22
Artificial intelligence for medication-related osteonecrosis of the jaw: a scoping review
2025-Mar-10, Oral surgery, oral medicine, oral pathology and oral radiology
综述 本文综述了人工智能在药物相关性颌骨坏死(MRONJ)的预测、诊断和管理中的应用现状 总结了AI在MRONJ预测、诊断和患者教育中的最新应用,并识别了当前研究的挑战和未来方向 数据质量、验证和临床整合方面的挑战尚未解决,且纳入研究数量有限(仅8篇) 评估人工智能在MRONJ领域的应用效果和潜力 药物相关性颌骨坏死(MRONJ)的预测、诊断和管理 人工智能在医学中的应用 颌骨坏死 机器学习(支持向量机、随机森林、梯度提升机)、深度学习、大语言模型 SVM、随机森林、梯度提升机、深度学习模型、LLM 放射影像数据、患者信息数据集 8项符合条件的研究(5项预测研究、2项诊断研究、1项患者教育研究)
1235 2025-05-22
Spatial transcriptomic clocks reveal cell proximity effects in brain ageing
2025-Feb, Nature IF:50.5Q1
研究论文 该研究通过构建空间分辨的单细胞转录组脑图谱,揭示了细胞邻近效应对脑衰老的影响 开发了空间衰老时钟模型,用于识别衰老、年轻化和疾病的空间及细胞类型特异性转录组指纹,并发现T细胞和神经干细胞对邻近细胞的显著影响 研究仅基于小鼠模型,人类大脑的类似效应尚未验证 探究细胞邻近效应对脑组织衰老的影响及潜在干预措施 成年寿命不同阶段的420万个脑细胞 空间转录组学 神经退行性疾病 空间分辨单细胞转录组测序 机器学习模型(空间衰老时钟)和深度学习 单细胞转录组数据 420万个细胞,覆盖20个不同年龄阶段
1236 2025-05-22
LeFood-set: Baseline performance of predicting level of leftovers food dataset in a hospital using MT learning
2025, PloS one IF:2.9Q1
研究论文 本文提出了一种基于深度学习的创新方法,用于预测医院患者餐盘中的剩余食物量,并创建了一个名为LeFoodSet的大规模开放数据集 首次创建了专门用于估计食物剩余量的大规模开放数据集LeFoodSet,并提出了结合视觉特征提取和后期融合的多任务学习模型 数据集仅包含34种印尼食物类别,可能无法完全代表其他地区的饮食习惯 开发AI方法来准确预测医院患者的食物剩余量,以替代耗时且存在偏差的人工观察 医院患者的餐盘食物剩余量 计算机视觉 NA 深度学习 ResNet101, 多任务学习(MT), 单任务学习(ST) 图像 524对图像(34种印尼食物类别,每类包含食用前后的图像)
1237 2025-05-22
Transfer learning in ECG diagnosis: Is it effective?
2025, PloS one IF:2.9Q1
研究论文 本文通过实证研究探讨了迁移学习在多标签心电图分类中的有效性 首次系统验证了迁移学习在心电图诊断中的效果,比较了微调与从头训练的性能差异 研究结果依赖于特定数据集和神经网络架构,可能不适用于所有心电图诊断场景 评估迁移学习在心电图诊断中的实际效果 多标签心电图分类 机器学习 心血管疾病 深度学习 CNN, RNN 时间序列数据 多种心电图数据集
1238 2025-05-22
Predictive hybrid model of a grid-connected photovoltaic system with DC-DC converters under extreme altitude conditions at 3800 meters above sea level
2025, PloS one IF:2.9Q1
研究论文 本研究开发了一种用于极端海拔条件下(海拔3800米)并网光伏系统的预测混合模型,旨在降低模型复杂度并提高准确性 结合递归特征消除(RFE)方法与高级正则化技术(如Lasso、Ridge和Bayesian Ridge),以解决维度灾难问题 未来工作将探索与储能系统和智能控制策略的集成,以及在极端气候条件下的应用 优化极端海拔条件下并网光伏系统的预测性能 由单晶模块、DC-DC优化器和3000 W逆变器组成的光伏系统 机器学习 NA RFE、Lasso、Ridge、Bayesian Ridge 混合模型 电力系统数据 NA
1239 2025-05-22
AI-driven educational transformation in ICT: Improving adaptability, sentiment, and academic performance with advanced machine learning
2025, PloS one IF:2.9Q1
研究论文 本研究通过部署先进的机器学习和深度学习策略,在教育技术领域实现了有意义的变革 采用混合堆叠方法结合多种机器学习模型,实现了高精度的预测和分析,特别是在情感分析和学术表现提升方面 数据集来源于Kaggle,可能无法完全代表所有教育环境 探索AI驱动的教育转型,提高学生的适应性、情感状态和学术表现 教育技术领域中的学生适应性、情感和学术表现 教育技术 NA 机器学习、深度学习 Decision Trees, Random Forest, XGBoost, Gradient Boosting, CNN, RCNN 结构化数据 1205条包含14个属性的条目
1240 2025-05-22
Anomaly recognition in surveillance based on feature optimizer using deep learning
2025, PloS one IF:2.9Q1
research paper 该研究提出了一种基于深度学习的先进框架,用于监控系统中的异常识别,通过特征优化技术显著提高了准确性和鲁棒性 创新点在于结合了新型63层CNN 'Up-to-the-Minute-Net' 和 Inception-Resnet-v2 进行特征提取,并采用蜻蜓算法和遗传算法进行特征优化 未提及具体的数据集规模限制或实际部署中的计算资源需求 提高监控系统中异常识别的准确性和鲁棒性 监控视频中的异常事件 computer vision NA histogram equalization, Dragonfly algorithm, Genetic Algorithm DCNN (包括 'Up-to-the-Minute-Net' 和 Inception-Resnet-v2) image 未明确说明具体样本数量,但使用了5折和10折交叉验证
回到顶部