本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!
除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
12381 | 2024-12-16 |
Clinical feasibility of a deep learning approach for conventional and synthetic diffusion-weighted imaging in breast cancer: Qualitative and quantitative analyses
2025-Jan, European journal of radiology
IF:3.2Q1
DOI:10.1016/j.ejrad.2024.111855
PMID:39616946
|
研究论文 | 本研究旨在探讨基于深度学习的重建方法在常规扩散加权成像(cDWI)和合成扩散加权成像(sDWI)中的临床可行性,并通过与cDWI和sDWI的比较,评估其在不同乳腺癌患者中的表现 | 深度学习重建的扩散加权成像在高质量b值下表现优于常规和合成扩散加权成像,并缩短了采集时间 | NA | 评估深度学习重建方法在乳腺癌扩散加权成像中的临床可行性 | 115名经活检证实的乳腺癌患者 | 计算机视觉 | 乳腺癌 | 深度学习 | NA | 图像 | 115名乳腺癌患者 |
12382 | 2024-12-16 |
A Hybrid Model for Fetal Growth Restriction Assessment by Automatic Placental Radiomics on T2-Weighted MRI and Multifeature Fusion
2025-Jan, Journal of magnetic resonance imaging : JMRI
IF:3.3Q1
DOI:10.1002/jmri.29399
PMID:38655903
|
研究论文 | 本文开发并验证了一种基于T2加权MRI和多特征融合的混合模型,用于自动评估胎儿生长受限 | 提出了一个混合模型,通过自动胎盘放射组学和多特征融合来提高胎儿生长受限的评估准确性,并引入了母体信息以提升性能 | 研究是回顾性的,且依赖于手动标注的胎盘数据 | 开发和验证一种能够通过自动胎盘放射组学和多特征融合来准确评估胎儿生长受限的混合模型 | 274名孕妇的胎盘和胎儿数据 | 数字病理学 | 胎儿生长受限 | T2加权MRI | 随机森林 | 图像 | 274名孕妇 |
12383 | 2024-12-16 |
Deep Learning Model for Grading and Localization of Lumbar Disc Herniation on Magnetic Resonance Imaging
2025-Jan, Journal of magnetic resonance imaging : JMRI
IF:3.3Q1
DOI:10.1002/jmri.29403
PMID:38676436
|
研究论文 | 本文开发了一种可解释的深度学习模型,用于在磁共振成像(MRI)上对腰椎间盘突出(LDH)进行分级和定位 | 利用深度学习模型自动化和标准化腰椎间盘突出的分级和定位过程,减少复杂性、时间和主观性 | 模型在外部测试集上的表现有所下降,表明需要进一步提高模型的泛化能力 | 开发一种能够对腰椎间盘突出进行分级和定位的深度学习模型 | 1496名患者的腰椎间盘突出MRI图像 | 计算机视觉 | 腰椎间盘突出 | 深度学习 | 深度学习模型 | 图像 | 1496名患者(男性783名,女性713名) |
12384 | 2024-12-16 |
Relationship between the volume of ventricles, brain parenchyma and neurocognition in children after hydrocephalus treatment
2024-Dec-14, Child's nervous system : ChNS : official journal of the International Society for Pediatric Neurosurgery
DOI:10.1007/s00381-024-06674-4
PMID:39673623
|
研究论文 | 研究评估了脑积水治疗后儿童脑室和脑实质体积与神经认知功能之间的关系 | 利用深度学习框架对术后T1w MR图像进行分析,展示了其在预测患者术后恢复中的潜力 | 样本量较小,且仅限于10岁以下的儿童 | 评估脑积水治疗后儿童的术后恢复过程,特别是脑实质和脑室体积与神经认知功能之间的关系 | 接受脑积水治疗的52名10岁以下儿童 | NA | NA | T1w MR图像 | 深度学习框架 | 图像 | 52名10岁以下儿童 |
12385 | 2024-12-16 |
The top 100 most-cited articles on artificial intelligence in breast radiology: a bibliometric analysis
2024-Dec-12, Insights into imaging
IF:4.1Q1
DOI:10.1186/s13244-024-01869-4
PMID:39666106
|
综述 | 本文对人工智能在乳腺放射学领域中最具影响力的100篇高被引文章进行了文献计量分析 | 本文通过文献计量分析,总结了人工智能在乳腺放射学领域中最具影响力的研究成果和趋势 | 本文仅基于文献计量分析,未涉及具体技术的深入研究 | 识别人工智能在乳腺影像学中最具影响力的出版物 | 人工智能在乳腺放射学领域的研究文献 | 计算机视觉 | 乳腺癌 | NA | NA | NA | NA |
12386 | 2024-12-16 |
Non-invasive eye tracking and retinal view reconstruction in free swimming schooling fish
2024-Dec-12, Communications biology
IF:5.2Q1
DOI:10.1038/s42003-024-07322-y
PMID:39668195
|
研究论文 | 本研究介绍了一种非侵入性技术,用于在大型3D竞技场中跟踪和重建自由游泳鱼类的视网膜视图,无需行为训练 | 该方法结合了多摄像头角度、深度学习进行3D鱼类姿态重建、透视变换和眼动追踪,实现了非侵入性的3D眼动追踪 | 研究仅在两条鱼的数据上进行了验证,未来需要扩展到更多样本以验证其普适性 | 开发一种非侵入性方法来研究自由游泳鱼类的视觉信息处理和注意力机制 | 自由游泳的鱼类及其在群体行为中的眼动和视网膜视图 | 计算机视觉 | NA | 深度学习 | NA | 视频 | 两条鱼 |
12387 | 2024-12-16 |
Deep Learning Assisted Plasmonic Dark-Field Microscopy for Super-Resolution Label-Free Imaging
2024-Dec-11, Nano letters
IF:9.6Q1
DOI:10.1021/acs.nanolett.4c04399
PMID:39586837
|
研究论文 | 本文提出了一种基于深度学习的等离子体暗场显微镜(DAPD),用于无标记超分辨率成像 | 通过结合等离子体暗场显微镜和深度学习辅助的图像重建,实现了单帧超分辨率成像,相较于传统暗场显微镜显著提高了空间分辨率 | 目前仅展示了2.8倍的分辨率提升,未来仍有改进空间 | 开发一种新型的无标记超分辨率成像技术 | 无标记样本的暗场显微图像 | 计算机视觉 | NA | 等离子体暗场显微镜 | 卷积神经网络(CNN) | 图像 | 多种无标记样本 |
12388 | 2024-12-16 |
Toward trustable use of machine learning models of variant effects in the clinic
2024-Dec-05, American journal of human genetics
IF:8.1Q1
DOI:10.1016/j.ajhg.2024.10.011
PMID:39561772
|
研究论文 | 本文探讨了在临床中使用机器学习模型预测错义突变效应的可信性,并提出了克服现有策略局限性的核心原则和建议 | 提出了核心原则和建议,以克服现有策略在验证和校准预测模型方面的局限性 | 现有策略在验证和校准预测模型方面仍存在重要局限性 | 实现机器学习模型在临床中预测错义突变效应的可信使用 | 错义突变效应预测模型在临床中的应用 | 机器学习 | NA | 深度学习 | NA | 序列数据 | NA |
12389 | 2024-12-16 |
Removing Adversarial Noise in X-ray Images via Total Variation Minimization and Patch-Based Regularization for Robust Deep Learning-based Diagnosis
2024-Dec, Journal of imaging informatics in medicine
DOI:10.1007/s10278-023-00919-5
PMID:38886292
|
研究论文 | 本文提出了一种利用总变差最小化和基于块的正则化方法来去除X射线图像中的对抗噪声,以提高基于深度学习的诊断模型的鲁棒性 | 本文创新性地引入了总变差最小化方法来对抗对抗噪声,显著提高了模型在对抗攻击下的诊断准确性 | 本文仅以COVID-19诊断为案例研究,未探讨该方法在其他疾病诊断中的应用效果 | 提高基于深度学习的放射学疾病诊断模型在对抗攻击下的鲁棒性 | COVID-19肺炎、非COVID肺炎和无肺炎的肺部X射线图像 | 计算机视觉 | 肺部疾病 | 总变差最小化 | CNN | 图像 | 包含无肺炎、COVID-19肺炎和非COVID肺炎病例的肺部X射线图像 |
12390 | 2024-12-16 |
ERL-ProLiGraph: Enhanced representation learning on protein-ligand graph structured data for binding affinity prediction
2024-Dec, Molecular informatics
IF:2.8Q2
DOI:10.1002/minf.202400044
PMID:39404190
|
研究论文 | 本文提出了一种基于深度学习的蛋白质-配体结合亲和力预测方法ERL-ProLiGraph,通过图结构数据增强表示学习 | 该方法创新性地使用图表示法来表示蛋白质和配体,旨在从两者的结构信息中学习以提高结合亲和力预测的准确性 | NA | 开发一种高效且更准确的蛋白质-配体结合亲和力预测方法,以加速药物发现过程 | 蛋白质-配体结合亲和力 | 机器学习 | NA | 深度学习算法 | NA | 图结构数据 | NA |
12391 | 2024-12-16 |
Structural comparison of homologous protein-RNA interfaces reveals widespread overall conservation contrasted with versatility in polar contacts
2024-Dec, PLoS computational biology
IF:3.8Q1
DOI:10.1371/journal.pcbi.1012650
PMID:39625988
|
研究论文 | 本文通过分析2022对结构同源的蛋白质-RNA界面,研究了蛋白质-RNA界面结构的进化 | 发现了蛋白质-RNA界面中距离依赖性接触和非极性接触的高度保守性,以及氢键、盐桥和π堆积相互作用的多样性 | 由于结构数据的稀缺性和这些复合物的灵活性,蛋白质-RNA结构预测仍落后于蛋白质-蛋白质界面预测 | 研究蛋白质-RNA界面结构的进化,并探索将进化信号整合到预测蛋白质-RNA结构建模方法中的可能性 | 2022对结构同源的蛋白质-RNA界面 | 生物信息学 | NA | NA | NA | 结构数据 | 2022对结构同源的蛋白质-RNA界面 |
12392 | 2024-12-16 |
Advanced vision transformers and open-set learning for robust mosquito classification: A novel approach to entomological studies
2024-Dec, PLoS computational biology
IF:3.8Q1
DOI:10.1371/journal.pcbi.1012654
PMID:39671336
|
研究论文 | 本文提出了一种利用先进的视觉Transformer和开放集学习技术进行蚊子分类的创新方法 | 引入了结合Transformer深度学习模型与数据增强及预处理方法的框架,并利用开放集学习技术处理未见过的类别 | NA | 提高蚊子分类的效率和准确性,以支持有效的监测和控制 | 十种蚊子物种的分类 | 计算机视觉 | NA | 视觉Transformer | Transformer | 图像 | NA |
12393 | 2024-12-16 |
DeepDR: a deep learning library for drug response prediction
2024-Nov-28, Bioinformatics (Oxford, England)
DOI:10.1093/bioinformatics/btae688
PMID:39558584
|
研究论文 | 本文介绍了一个名为DeepDR的深度学习库,专门用于药物反应预测 | DeepDR是首个专门为药物反应预测开发的深度学习库,简化了药物和细胞特征化、模型构建、训练和推理的过程 | NA | 推动精准医学和药物发现的发展 | 药物反应预测 | 机器学习 | NA | 深度学习 | 深度学习模型 | 药物和细胞特征 | NA |
12394 | 2024-12-16 |
Multi-kernel feature extraction with dynamic fusion and downsampled residual feature embedding for predicting rice RNA N6-methyladenine sites
2024-Nov-22, Briefings in bioinformatics
IF:6.8Q1
DOI:10.1093/bib/bbae647
PMID:39674264
|
研究论文 | 本文提出了一种新的端到端深度学习框架MFDm6ARice,用于预测水稻RNA N6-甲基腺苷位点,通过多核特征融合模块和下采样残差特征嵌入模块提高特征提取的准确性和计算效率 | 本文创新性地构建了多核特征融合模块和下采样残差特征嵌入模块,解决了传统方法中因无效填充导致的特征稀疏和高维特征复杂性问题 | 本文未提及具体的局限性 | 开发一种新的深度学习框架,用于准确预测水稻RNA N6-甲基腺苷位点 | 水稻RNA N6-甲基腺苷位点 | 机器学习 | NA | 深度学习 | NA | 序列 | 未具体说明样本数量 |
12395 | 2024-12-16 |
Automated segmentation of brain metastases with deep learning: A multi-center, randomized crossover, multi-reader evaluation study
2024-Nov-04, Neuro-oncology
IF:16.4Q1
DOI:10.1093/neuonc/noae113
PMID:38991556
|
研究论文 | 本研究开发并评估了一种基于深度学习的脑转移瘤分割系统,通过多中心、随机交叉、多读者评估研究验证其在临床实践中的应用 | 首次通过多中心、随机交叉、多读者评估研究验证了基于深度学习的脑转移瘤分割系统的临床应用效果 | 研究样本量相对较小,且仅限于脑转移瘤的分割任务 | 开发并验证一种用于脑转移瘤分割的深度学习系统 | 脑转移瘤的分割任务 | 计算机视觉 | 脑转移瘤 | 深度学习 | NA | 图像 | 488名患者的数据用于系统开发,50名患者的数据用于评估 |
12396 | 2024-12-16 |
A pathway from surface to deep online language learning approach: The crucial role of online self-regulation
2024-Nov, Acta psychologica
IF:2.1Q2
DOI:10.1016/j.actpsy.2024.104644
PMID:39652985
|
研究论文 | 研究探讨了伊朗高中EFL学习者在在线语言学习中的学习方法,特别是教学、技术和同伴支持以及在线自我调节的中介作用 | 提出了一个新的概念框架,即在线语言学习方法(OLLA),并引入了与语言学习者复杂动态系统相关的新心理学因素 | 研究仅限于伊朗高中EFL学习者,可能无法推广到其他群体或教育背景 | 填补在线语言学习领域中关于学习者方法的空白,特别是在计算机辅助语言学习和心理语言学领域 | 伊朗高中EFL学习者在在线语言学习中的学习方法 | 计算机辅助语言学习 | NA | 偏最小二乘结构方程建模(PLS-SEM) | 偏最小二乘结构方程建模 | 文本 | 686名伊朗高中EFL学习者 |
12397 | 2024-12-16 |
Toward a Semi-Supervised Learning Approach to Phylogenetic Estimation
2024-Oct-30, Systematic biology
IF:6.1Q1
DOI:10.1093/sysbio/syae029
PMID:38916476
|
研究论文 | 本文提出了一种半监督学习方法,用于推断分子进化和重建系统发育树 | 本文结合了基因组进化随机模拟与一种新的监督深度学习模型,直接分析多序列比对并估计每个位点的进化速率和分歧度,无需已知的系统发育树 | 本文的方法在复杂速率变化模式下表现优异,但在简单伽马分布下的准确性与基于似然的系统发育推断相当 | 开发一种新的半监督学习方法,用于更灵活和准确的系统发育分析 | 分子进化速率参数和系统发育树的重建 | 机器学习 | NA | 深度学习 | 深度学习模型 | 基因组数据 | 2600万核苷酸的基因组数据 |
12398 | 2024-12-16 |
TAWFN: a deep learning framework for protein function prediction
2024-Oct-01, Bioinformatics (Oxford, England)
DOI:10.1093/bioinformatics/btae571
PMID:39312678
|
研究论文 | 本文提出了一种结合卷积神经网络(CNN)和图卷积网络(GCN)的深度学习框架TAWFN,用于蛋白质功能预测 | 本文的创新点在于提出了一种结合CNN和GCN的统一框架TAWFN,通过自适应权重融合网络来提高蛋白质功能预测的准确性 | 本文的局限性在于仅在PDBset和AFset数据集上进行了实验验证,未来需要在更多数据集上进行测试 | 本文的研究目的是提高蛋白质功能预测的准确性 | 本文的研究对象是蛋白质结构及其功能 | 机器学习 | NA | 卷积神经网络(CNN)、图卷积网络(GCN) | 卷积神经网络(CNN)、图卷积网络(GCN) | 蛋白质结构数据 | 实验使用了PDBset和AFset数据集 |
12399 | 2024-12-16 |
LEO navigation observables extraction using CLOCFC network
2024-Sep-04, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-024-70846-0
PMID:39242654
|
研究论文 | 本文提出了一种轻量级深度学习模型CLOCFC,用于从低地球轨道卫星信号中提取导航观测值 | 提出了CLOCFC模型,采用双分支结构,并引入了CFC模块(一种液态神经网络),以增强数据序列中的时空信息获取能力 | NA | 减少航空用户对全球导航卫星系统的依赖,利用低地球轨道卫星的信号进行导航和定位 | 从低地球轨道卫星信号中提取导航观测值 | 机器学习 | NA | 深度学习 | CLOCFC | 信号 | 使用ORBCOMM星座信号作为模型输入,多普勒频率作为标签,进行了大量实验 |
12400 | 2024-12-16 |
Sitetack: A Deep Learning Model that Improves PTM Prediction by Using Known PTMs
2024-Jun-04, bioRxiv : the preprint server for biology
DOI:10.1101/2024.06.03.596298
PMID:38895359
|
研究论文 | 本文提出了一种名为Sitetack的深度学习模型,通过使用已知的蛋白质翻译后修饰(PTM)位点来提高PTM预测的准确性 | 通过在模型中引入已知的PTM位点标签,显著提升了现有模型的预测性能,并展示了PTM位点对其他PTM预测的重要性 | 文章未明确提及具体的局限性 | 提高蛋白质翻译后修饰(PTM)位点的预测准确性 | 蛋白质翻译后修饰(PTM)位点 | 机器学习 | NA | 深度学习 | 卷积神经网络(CNN) | 序列数据 | 未明确提及具体样本数量 |