深度学习在生物医药领域中的应用

本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!

如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!

Sample Image
添加微信请说明来意
Sample Image
微信赞赏

除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。

当前筛选条件: [分区不过滤] [IF不过滤] [发表日期不过滤] [清除筛选条件]
当前共找到 24162 篇文献,本页显示第 12381 - 12400 篇。
序号 推送日期 文章 类型 简述 创新点 不足 研究目的 研究对象 领域 病种 技术 模型 数据类型 样本量
12381 2024-11-15
Learning from Longitudinal Data in Electronic Health Record and Genetic Data to Improve Cardiovascular Event Prediction
2019-01-24, Scientific reports IF:3.8Q1
研究论文 本研究利用电子健康记录和基因数据中的纵向数据,应用机器学习和深度学习模型来预测心血管事件 本研究首次将纵向电子健康记录和基因数据结合,通过后期融合方法进一步提高心血管事件预测的准确性 本研究仅限于特定人群和特定时间段的数据,可能无法推广到其他人群或更长时间段 提高心血管事件预测的准确性 心血管疾病事件 机器学习 心血管疾病 NA 卷积神经网络 (CNN) 和长短期记忆网络 (LSTM) 电子健康记录和基因数据 109,490 名个体
12382 2024-11-15
Pulmonary Artery-Vein Classification in CT Images Using Deep Learning
2018-11, IEEE transactions on medical imaging IF:8.9Q1
研究论文 本文提出了一种基于深度学习的肺动脉和肺静脉在CT图像中的自动分类方法 本文提出了一种新的全自动方法,通过三步流程(尺度空间粒子分割、3D卷积神经网络分类和图割优化)来分类肺动脉和肺静脉,并展示了其优于现有方法的性能 本文仅在18个临床病例的非对比CT扫描上进行了训练和评估,未来需要在更大样本量和更多类型的CT扫描上进行验证 开发一种自动化的方法来区分CT图像中的肺动脉和肺静脉,以辅助医生进行病理诊断 肺动脉和肺静脉在CT图像中的分类 计算机视觉 肺部疾病 3D卷积神经网络 CNN 图像 18个临床病例的非对比胸部CT扫描
12383 2024-11-14
G-Protein Signaling in Alzheimer's Disease: Spatial Expression Validation of Semi-supervised Deep Learning-Based Computational Framework
2024-Nov-06, The Journal of neuroscience : the official journal of the Society for Neuroscience
研究论文 本文开发了一种新的计算框架digID,用于预测阿尔茨海默病相关的基因,并通过蛋白质-蛋白质相互作用网络分析优先考虑这些基因的重要性 本文创新性地结合了半监督深度学习分类器和蛋白质-蛋白质相互作用网络分析,预测了1529个与阿尔茨海默病相关的基因,并揭示了潜在的新分子机制和治疗靶点 本文的局限性在于需要进一步的生物学验证来确认计算预测的基因簇作为潜在的新治疗靶点 研究旨在通过计算方法识别与阿尔茨海默病相关的新基因和治疗靶点 研究对象包括阿尔茨海默病相关的基因、蛋白质相互作用网络以及大脑不同区域的mRNA表达 机器学习 阿尔茨海默病 半监督深度学习 NA 多组学数据 包括1529个预测的阿尔茨海默病相关基因和转基因小鼠模型
12384 2024-11-14
Unleashing the strengths of unlabelled data in deep learning-assisted pan-cancer abdominal organ quantification: the FLARE22 challenge
2024-Nov, The Lancet. Digital health
研究论文 本文介绍了FLARE22挑战赛,旨在评估和提升深度学习在腹部器官分割和量化中的应用,特别是在使用未标记数据的情况下 本文首次展示了如何利用未标记数据显著减少手动标注成本,并提高深度学习算法在跨国数据集上的泛化能力 本文主要集中在腹部器官的分割和量化,未涉及其他类型的医学图像分析 评估和提升深度学习在腹部器官分割和量化中的应用,特别是在使用未标记数据的情况下 腹部器官的分割和量化 计算机视觉 NA 深度学习 NA 图像 使用了50个标记图像和2000个未标记图像
12385 2024-11-14
A Cross-Modal Mutual Knowledge Distillation Framework for Alzheimer's Disease Diagnosis: Addressing Incomplete Modalities
2024-Oct-22, medRxiv : the preprint server for health sciences
研究论文 提出了一种用于阿尔茨海默病诊断的跨模态互知识蒸馏框架,以解决数据集中模态不完整的问题 通过跨模态互知识蒸馏(MKD)框架,利用多模态模型作为教师模型,单模态模型作为学生模型,实现了在不完整模态数据集上的有效诊断 NA 开发一种能够在不完整模态数据集上进行阿尔茨海默病早期检测的深度学习框架 阿尔茨海默病患者的多模态神经影像数据 机器学习 阿尔茨海默病 深度学习 跨模态互知识蒸馏框架 多模态神经影像数据(MRI和PET) 使用了阿尔茨海默病神经影像学倡议(ADNI)数据集进行验证
12386 2024-09-13
Is Histopathology Deep Learning Artificial Intelligence the Future of Precision Oncology?
2024-Oct-20, Journal of clinical oncology : official journal of the American Society of Clinical Oncology IF:42.1Q1
NA NA NA NA NA NA NA NA NA NA NA NA
12387 2024-11-14
Deep learning-based cell segmentation for rapid optical cytopathology of thyroid cancer
2024-07-16, Scientific reports IF:3.8Q1
研究论文 本文介绍了一种基于深度学习的细胞分割方法,用于快速光学细胞病理学诊断甲状腺癌 提出了使用2D U-Net卷积神经网络进行自动细胞分割,显著减少了数据分析时间 自动分割与手动分割在细胞面积和荧光极化值上存在一定差异 开发一种快速且准确的甲状腺癌诊断方法 甲状腺癌细胞 计算机视觉 甲状腺癌 深度学习 U-Net 图像 使用了病理多样的人类甲状腺细胞图像进行训练和测试
12388 2024-11-14
Lightning Pose: improved animal pose estimation via semi-supervised learning, Bayesian ensembling and cloud-native open-source tools
2024-Jul, Nature methods IF:36.1Q1
研究论文 介绍了一种名为'Lightning Pose'的高效姿态估计工具,通过半监督学习、贝叶斯集成和云原生开源工具改进动物姿态估计 引入了半监督学习方法,利用未标记视频帧提高预测准确性;设计了处理遮挡的网络架构;通过集成和卡尔曼平滑后处理提高姿态轨迹的准确性 未明确提及 改进动物姿态估计的准确性和科学可用性 动物姿态估计 计算机视觉 NA 半监督学习 深度学习网络 视频 未明确提及
12389 2024-11-14
Quantum-to-Classical Neural Network Transfer Learning Applied to Drug Toxicity Prediction
2024-Jun-11, Journal of chemical theory and computation IF:5.7Q1
研究论文 本文提出了一种混合量子-经典神经网络,用于预测药物毒性,并展示了其在Tox21数据集上的应用 利用量子电路设计模拟经典神经网络行为,通过Hadamard测试减少量子比特数量,并实现了量子到经典设备的可学习权重转移 NA 解决药物毒性预测中的计算复杂性问题,提高药物筛选效率 药物毒性预测 机器学习 NA 量子计算 混合量子-经典神经网络 数据集 Tox21数据集
12390 2024-11-14
Shoulder Bone Segmentation with DeepLab and U-Net
2024-Jun, Osteology (Basel, Switzerland)
研究论文 比较了基于DeepLab和U-Net的两种深度学习模型在ZTE MRI上进行肩部骨骼自动分割的性能 首次在肩部骨骼分割任务中比较了DeepLab和U-Net模型的性能,并实现了U-Net模型在MRI控制台上的应用 研究处于早期阶段,样本量较小,且存在模型对分割区域估计不准确的问题 评估和比较两种深度学习模型在肩部骨骼分割任务中的表现,以改进术前规划 肩部骨骼,特别是肱骨头和髋臼的分割 计算机视觉 NA ZTE MRI DeepLab, U-Net 图像 31例正常肩部样本用于训练,13例用于测试
12391 2024-11-14
Deep learning based characterization of human organoids using optical coherence tomography
2024-May-01, Biomedical optics express IF:2.9Q2
研究论文 本研究利用光学相干断层扫描(OCT)和深度学习技术对人类类器官进行快速、非侵入性成像和自动分割 开发了一种结合OCT和深度学习的方法,用于实时、定量分析类器官的形态和功能 NA 研究类器官的形态和功能,并开发新的成像和分析工具 人类诱导多能干细胞(hiPSCs)衍生的视网膜、大脑和心脏类器官 计算机视觉 NA 光学相干断层扫描(OCT) 深度学习 图像 NA
12392 2024-11-14
An integrated framework for prognosis prediction and drug response modeling in colorectal liver metastasis drug discovery
2024-03-30, Journal of translational medicine IF:6.1Q1
研究论文 本研究开发了一个综合框架,用于预测结直肠癌肝转移的预后和药物反应建模 本研究开发了两个基于差异表达基因的肝转移相关预后标志物,并使用可解释的深度学习模型识别高风险患者的潜在治疗药物 NA 发现结直肠癌肝转移的新型预后生物标志物和治疗药物 结直肠癌肝转移患者 机器学习 结直肠癌 深度学习 深度学习模型 基因表达数据 NA
12393 2024-11-14
Artificial intelligence in neuro-oncology: advances and challenges in brain tumor diagnosis, prognosis, and precision treatment
2024-Mar-29, NPJ precision oncology IF:6.8Q1
综述 本文综述了人工智能在神经肿瘤学中的最新进展及其在脑肿瘤诊断、预后和精准治疗中的挑战 人工智能在脑肿瘤管理中引入了变革性创新,利用成像、组织病理学和基因组工具实现高效检测、分类、预后预测和治疗规划 本文讨论了人工智能在神经肿瘤学应用中的挑战,包括多模态数据整合、生成性人工智能、大型医学语言模型、精确肿瘤描绘和特征化以及解决种族和性别差异等问题 探讨人工智能在神经肿瘤学中的应用及其对脑肿瘤管理的全面影响 胶质瘤,一类代表全球重大健康问题的脑肿瘤 计算机视觉 脑肿瘤 人工智能 深度学习 成像数据 NA
12394 2024-11-14
Digitally assessed lymphocyte infiltration in rectal cancer biopsies is associated with pathological response to neoadjuvant therapy
2024-02, Human pathology IF:2.7Q2
研究论文 研究评估了数字技术在直肠癌活检中淋巴细胞浸润与新辅助治疗病理反应之间的关联 首次探讨了数字评估的淋巴细胞密度与直肠癌新辅助治疗病理反应之间的关系 样本量较小,仅包括50名患者 寻找预测直肠癌新辅助治疗病理反应的潜在生物标志物 直肠癌患者的活检样本 数字病理学 直肠癌 深度学习 NA 图像 50名直肠癌患者
12395 2024-11-14
Use of a novel magnetically actuated compression system to study the temporal dynamics of axial and lateral strain in human osteochondral plugs
2024-Jan, Journal of biomechanics IF:2.4Q3
研究论文 研究了一种新型磁力驱动压缩系统对人类骨软骨插件轴向和横向应变时间动态的影响 开发了一种磁力驱动装置,在加载周期之间提供完全的平板提升,以解决传统实验系统可能影响组织再水化的问题 研究仅限于尸体人类骨软骨插件,未涉及活体组织 研究再水化对软骨在循环加载下行为的影响 人类骨软骨插件 生物力学 NA 磁力驱动技术 UNet 图像 750次加载周期,30帧每秒的二维软骨图像捕捉
12396 2024-11-14
Acceleration of high-quality Raman imaging via a locality enhanced transformer network
2023-Dec-04, The Analyst
研究论文 本文提出了一种局部增强的Transformer网络(LETNet)用于拉曼图像超分辨率处理,以加速高质量拉曼成像 本文创新性地将Transformer架构中的自注意力机制替换为卷积,并采用深度卷积优化模型,显著提高了计算效率 NA 本文旨在通过深度学习方法加速高质量拉曼成像,以促进其在实时诊断和治疗中的应用 本文研究对象包括乳腺癌细胞和脑肿瘤组织的拉曼图像 计算机视觉 乳腺癌、脑肿瘤 拉曼成像 Transformer网络 图像 乳腺癌细胞和脑肿瘤组织的拉曼图像
12397 2024-11-14
A deep learning model using hyperspectral image for EUS-FNA cytology diagnosis in pancreatic ductal adenocarcinoma
2023-08, Cancer medicine IF:2.9Q2
研究论文 本文开发了一种基于高光谱图像的深度学习模型,用于内镜超声引导下细针穿刺细胞学诊断胰腺导管腺癌 首次将高光谱成像技术与卷积神经网络结合,用于胰腺导管腺癌的细胞学诊断 需要进一步验证模型在更大样本量和不同临床环境中的泛化能力 开发一种辅助细胞病理学家诊断胰腺导管腺癌的深度学习模型 胰腺导管腺癌和良性胰腺组织的细胞学样本 计算机视觉 胰腺癌 高光谱成像 卷积神经网络 图像 共62个样本,包括33个良性胰腺组织和39个胰腺导管腺癌
12398 2024-11-14
Thyroid Cytopathology Cancer Diagnosis from Smartphone Images Using Machine Learning
2023-06, Modern pathology : an official journal of the United States and Canadian Academy of Pathology, Inc IF:7.1Q1
研究论文 研究使用智能手机图像进行甲状腺细胞病理学癌症诊断的深度学习模型性能 通过颜色增强训练减少了模型对手机和扫描仪图像颜色差异的敏感性,提高了智能手机图像的诊断性能 研究仅限于甲状腺细胞病理学,且样本量较小 评估深度学习模型在智能手机图像上进行甲状腺细胞病理学癌症诊断的性能 甲状腺细针穿刺活检图像 机器学习 甲状腺癌 深度学习 NA 图像 训练集包含964张高分辨率扫描图像,测试集包含100张幻灯片,每张幻灯片20个感兴趣区域
12399 2024-11-14
Growing ecosystem of deep learning methods for modeling protein-protein interactions
2023-Jan-21, Protein engineering, design & selection : PEDS
综述 本文综述了用于建模蛋白质相互作用的深度学习方法生态系统的发展 深度学习通过利用实验数据和蛋白质相互作用的基本生物物理知识,成为解决蛋白质相互作用多样性问题的有前途的方法 本文讨论了现有方法的局限性和未来研究方向 综述和讨论用于建模蛋白质相互作用的深度学习方法及其应用 蛋白质相互作用及其建模方法 机器学习 NA 深度学习 NA NA NA
12400 2024-11-13
Post-deployment performance of a deep learning algorithm for normal and abnormal chest X-ray classification: A study at visa screening centers in the United Arab Emirates
2024-Dec, European journal of radiology open IF:1.8Q3
研究论文 研究了在阿联酋签证筛查中心部署的深度学习算法在正常和异常胸片分类中的表现 使用了大量数据进行研究,高负预测值和与人类读者的满意一致性表明AI可以可靠地识别正常胸片 正预测值较低,整体与放射科医生的同意率仅为72.90% 评估深度学习算法在胸片分类中的实际应用效果 胸片分类算法在签证筛查中心的部署表现 计算机视觉 NA 深度学习 深度学习算法 图像 1,309,443张胸片,来自1,309,431名患者
回到顶部